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In general, modelling is a complex and creative task, and building qualitative 

models is no exception. One way of automating this task is by means of 

machine learning. Observed behaviours of a modelled system are used as 

examples for a learning algorithm which constructs a model that is consistent 

with the data. In this paper we review approaches to the learning of qualitative 

models, either from numerical data or qualitative observations. We describe 

the QUIN program that looks for qualitative patterns in numerical data, and 

outputs the results of learning as “qualitative trees”.  We illustrate this by 

applications associated with systems control, in particular the identification 

and optimisation of controllers and of human operator’s control skill. We also 

review approaches that learn models in terms of qualitative differential 

equations.  

 

 

Introduction 

 

Much research in the field of qualitative reasoning has been devoted to the questions of 

representation of qualitative models, and to qualitative simulation algorithms that derive 

qualitative behaviours from given qualitative models. However, an important practical 

question is how to construct qualitative models in the first place. In general, model 

construction is usually the most demanding aspect of the modelling task. In this paper we look 

at research that aims at automating this task.  

 

One idea is to use observations of the modelled system, obtained through measurements, and 

try to find a model that, when simulated, would reproduce the same, observed behaviours. 



This task is known as system identification, and is just the opposite of system simulation. Of 

course, to be of interest, the model induced from observations should be more general than the 

observations themselves. The induced model should be capable of making predictions also in 

situations other than those literally included among the observations. This task can also be 

viewed as machine learning from examples. The observed system behaviours are taken as 

examples for a learning algorithm, and the result of learning, usually called a theory, or a 

hypothesis induced from the examples, represents a model of the system. 

 

In this paper we consider the particular problem of inducing a qualitative model from 

examples of system behaviours. We first look at a recently developed approach based on the 

induction of qualitative trees. Then we present an application of this technique to problems 

associated with the control of dynamic systems. One such application is the qualitative 

identification of industrial controllers, which can also be viewed as qualitative reverse 

engineering. Another application is in the identification of tacit control skills of human 

operators. In the last part of the paper we review some other representative approaches to the 

learning of qualitative models. 

 

It should be noted that, in comparison with traditional (quantitative) system identification, in 

“qualitative system identification” there is much more emphasis on obtaining comprehensible 

models, models that intuitively explain how the system works. 

 

 

Qualitative data mining with QUIN 

 

QUIN (Qualitative Induction) is a learning program that looks for qualitative patterns in 

numerical data (Šuc 2001;  Šuc and Bratko 2001). Induction of the so-called qualitative trees 

is similar to the well-known induction of decision trees (e.g. CART, Breiman et al. 1984; 

C4.5, Quinlan 1993). The difference is that in decision trees the leaves are labelled with class 

values, whereas in qualitative trees the leaves are labelled with what we call qualitatively 

constrained functions.   

 

Qualitatively constrained functions (QCFs for short) are a kind of monotonicity constraints 

that are widely used in the field of qualitative reasoning. A simple example of QCF is: Y = 

M+(X). This says that Y is a monotonically increasing function of X. In general, QCFs can 



have more than one argument. For example, Z = M+,-(X,Y) says that Z monotonically 

increases in X and decreases in Y. If both X and Y increase, then according to this constraint, 

Z may increase, decrease or stay unchanged. In such a case, a QCF cannot make an 

unambiguous prediction of the qualitative change in Z. In the literature, QCFs appear also 

under the term “multivariate monotonic function constraints” (Wellman 1991). 

 

QUIN takes as input a set of numerical examples and looks for qualitative patterns among the 

data. More precisely, QUIN looks for regions in the data space where monotonicity 

constraints hold. Such a set of qualitative patterns are represented in terms of a qualitative 

tree. As in decision trees, the internal nodes in a qualitative tree specify conditions that split 

the attribute space into subspaces. In a qualitative tree, however, each leaf specifies a QCF 

that holds among the input data that fall into that leaf. Figure 1a shows an example data set 

with three variables X, Y and Z. The data points correspond to the function Z = X2 – Y2 with 

some Gaussian noise added. When QUIN is asked to find in these data qualitative constraints 

on Z as a function of X and Y, QUIN generates the qualitative tree shown in Figure 1b. X and 

Y are independent variables, also called attributes, and Z is the dependent variable, also called 

class. This tree partitions the data space into four regions that correspond to the four leaves of 

the tree. A different QCF applies in each of the leaves. The tree describes how Z qualitatively 

depends on X and Y. Notice that noise in the data in this example did not present problems to 

QUIN. 

 

QUIN constructs a tree in a top-down greedy fashion, similarly to decision tree induction 

algorithms. At each internal node of the tree, QUIN considers all possible splits, that is 

conditions of the form X < T for all the attribute variables X and effectively all possible 

thresholds T with respect to X. Each such condition partitions the training data into two 

subsets. QUIN finds the “best” QCF for each subset according to an error-cost measure for 

QCFs. Then the best split is selected according to the MDL (minimum description length) 

principle, which minimizes the error-cost and the encoding complexity of QCFs. The error-

cost of a QCF with respect to an example set S is defined so that it takes into account the 

consistency of the QCF with S, and the “ambiguity” of  the QCF with respect to the data in S 

(the more unambiguous qualitative predictions the QCF can make in S the better). Technical 

details of all this can be found in (Šuc 2001) or (Šuc and Bratko 2001) where QUIN’s 

performance on noisy data is also studied. 
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Figure 1: (a) A data set of points where Z = X2 – Y2 + some noise; (b) A qualitative tree 

induced by QUIN from this data set. 

 

 

A qualitative reverse engineering application of QUIN 

 

In this section we present an application of QUIN to reverse engineering of an artefact. The 

task of reverse engineering is in a sense formally equivalent to system identification, although 

the application context is different.  

 

First we explain the motivation for this kind of reverse engineering applications, as observed 

in the European project Clockwork. This project aims at creating tools to support engineering 

design. Accumulated engineering design knowledge in a company often takes the form of a 

library of designs and corresponding simulation models. A typical common problem with 

such libraries is incomplete documentation. Such libraries contain numerous versions of 



models (designs) where comparative advantages and drawbacks of alternative models are not 

well documented. Re-use of designs is made difficult specially because the intuitions behind 

designs and their improvements are not explained in the documentation. Although there may 

be complete mathematical models and working simulation programs included in the library, 

the user of the library is impeded by lack of understanding of how does the designed system 

work. What are the basic ideas of a design? For example, how does a controller of a dynamic 

system achieve the goal of control? What is the idea behind the improvement in an alternative 

design?  

 

Here we show how the task of recovering the underlying ideas of designs can be tackled by 

qualitative machine learning, in particular using the QUIN program. We assume a model in an 

engineering library is complete so that it can be executed on a simulator. The simulated 

system can thus be observed as a black box, but the internal structure of the system is obscure 

to the user because it is too complex to be understood without explanation. To help the user 

develop some intuitive understanding of how the black box works, machine learning tools can 

be used to analyse the behaviour of the variables in the model and detect meaningful relations 

among these variables. We refer to this as qualitative reverse engineering (Šuc and Bratko 

2002). This task is formally similar to qualitative system identification (Say and Kuru 1996), 

although the context may be completely different. 

 

We will illustrate an approach to qualitative reverse engineering by an application from the 

control of gantry cranes (Figure 2). The task is to move the load from some start position to a 

goal position. The goal position can, for example, be a truck. For safety, when the load is 

entering the truck, it should not be swinging. The criterion is to transfer the load as quickly as 

possible, that is at high velocity. However, high velocity requires large acceleration, which in 

turn causes large swing of the load. The controller should carry out acceleration manoeuvres 

in such a way as to minimize the swing, so it should be capable of controlling the swing under 

large accelerations. This is the difficult aspect of the crane control task. 

 

M. Valašek designed an “anti-sway” industrial controller for gantry cranes (Valašek et al. 

1996). This controller is now in every day use in cranes in a Czech metallurgical factory 

(Valašek, personal communication). The controller helps the crane operator to easily control 

the crane carriage velocity without causing large swing of the load. The operator specifies the 



desired carriage velocity. The controller works between the crane and the operator, and 

computes for the given desired velocity a control force that achieves a good approximation to 
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Figure 2: Gantry crane. 
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Figure 3: Execution trace in time of the anti-sway controller. 

 

the desired velocity, but does this in such a way that it only causes a small swing of the load. 

Therefore this controller is also called the “anti-sway crane”. Figure 3 gives an example 

execution trace of the desired velocity Vdes, controller’s action (force F in time), the actual 

crane’s velocity V, rope angle Fi and angular velocity DFi. This trace shows that the 

controller achieves the desired velocity in time causing only one sway of the load, without 

any periodic oscillation. To prevent oscillation, the force changes in time in a non-trivial way, 

and so does the actual velocity.  



 

     Now consider that this controller is given as a black box. Its inputs and outputs can be 

observed, but there is no documentation about how it works. The problem is to reverse 

engineer the controller, given some observed control traces such as that in Figure 3.  

 

     In this paper we are particularly interested in extracting from control traces such a 

description of the underlying controller that uncovers the basic intuition about how the 

controller works. To this end we seek to recover from control traces a qualitative model of the 

controller since such models usually provide better explanation of how the system works than 

other types of models. The task of qualitative reverse engineering for our crane case is then 

defined as: given examples of time behaviours of Vdes, F, X, V, Fi, DFi, find a qualitative 

relation between the control force F and the other quantities.  

 

     Let us illustrate how a control strategy can be described qualitatively, using typical 

formalisms in qualitative physics.  For example, consider the crane at rest in the initial state. 

To start the crane moving, both velocity V and position X should be increasing 

simultaneously. This can be stated by the usual qualitative constraint: 

         V = M+(X) 

It should be noted that this is not a law of the physics of the crane system, but it is a control 

law enforced by a controller. Another qualitative rule about controlling the swing may be: the 

greater the rope angle and the faster it is increasing, the greater should be the carriage velocity 

to “catch up” with the angle. This can be stated by the QCF: 

       V = M+,+(Fi,DFi) 

 

The controller identification task can be formulated in various ways, depending on which 

variable is the class, and what variables are included among the attribute variables. Figure 4 

shows an example qualitative tree induced by QUIN from the execution trace of Figure 3. 

This tree gives the qualitative constraints on the function that maps the variables X, V, Fi, DFi 

and the relative carriage velocity Vrel (relative to the desired velocity Vdes, Vrel = V – Vdes) 

into the control force F.  

 



 
 
 
 
 
 
 
 
 

                                            Fi ≤ 0.63 
 
                     yes                                            no 
 
              Fi ≤ -0.87                                        Fi ≤ 0.63 
         
   yes                        no                     yes                         no 
 
F = M+(Fi)      F = M-,-(Vrel,Fi)       F = M-,-(Vrel,Fi)    F = M+(Fi) 

 
  Figure 4: A qualitative controller induced from the trace of Figure 3. The tree shows how  
  the control force F qualitatively depends on the rope angle Fi and the relative carriage  
  velocity Vrel = V-Vdes (the difference between the actual velocity and the desired velocity). 
 
 

The qualitative tree of Figure 4 exposes some interesting properties of the anti-sway control 

strategy. When the rope angle is large positive or negative, then the controller takes care about 

the angle. When the angle is small, then the carriage is pushed in the direction of desired 

velocity and, surprisingly, increasing the absolute angle of the rope. 

 

A qualitative control strategy, such as that in Figure 4, cannot be directly used as a controller 

because it does not determine a precise, numerical value of the control force. The qualitative 

tree just tells that, for example, the greater the rope angle, the lesser the control force. To 

make a qualitative control strategy operational, we have to transform the QCFs in the leaves 

into actual numerical functions. The QCFs constrain the choice of these functions. The 

problem of this qualitative-to-quantitative transformation (Q2Q transformation) can be 

viewed as an optimization problem. The optimization criterion has to be defined in such a 

way that it maximizes the fit in time between the actual carriage velocity and the desired 

velocity, and minimizes the swing in time. One such optimization procedure to solve this 

optimization problem is described in (Šuc 2001; Šuc and Bratko 2000b). Experiments 

described in (Šuc and Bratko 2002) with this optimization procedure applied on qualitative 

control strategies for the anti-sway crane show that the so obtained reconstructed controllers 

perform comparably to the original controller.  

 

For comparison, an interesting question is: Was it essential to first reconstruct the control 

strategy from quantitative data qualitatively, and then transform it into a quantitative strategy? 

Or would a straightforward numerical reconstruction, using numerical regression, be equally 

successful? The most natural machine learning method for this is induction of regression trees 



(Breiman et al. 1984), or its variant model trees (Quinlan 1992). The experiments with model 

trees on the same task, also reported in (Šuc and Bratko 2002), somewhat surprisingly did not 

lead to a successful reconstruction of the anti-sway controller. It is not quite clear yet why the 

straightforward numerical learning failed when qualitative learning (combined with the Q2Q 

transformation) succeeded. Just studying the learning data from the execution trace suggests 

the following answer to be likely: the numerical data are rather regression-unfriendly and it is 

hard for the regression procedure to decide whether some relatively small numerical 

differences are just due to noise or numerical perturbations, or they reflect genuine 

dependences among the variables. On the other hand, it seems that QUIN is more robust at 

detecting subtle qualitative dependences because it pays less attention to the absolute values 

of numerical changes. In other words, what numerically looks like noise, may qualitatively be 

significant. This conjecture requires further investigation. 

 

Identification of operator’s skill 

 

Human operator’s control of a complex dynamic system, such as a crane or an aircraft, 

requires skill acquired through experience. Imagine that we have a skilled crane operator, then 

some questions of interest are: How does he or she do it?  Can we understand such a tacit 

human skill? Can we reconstruct the skill as an automatic controller and further optimize it? 

One attempt would be to extract the skill from the operator in a dialogue fashion whereby the 

operator would be expected to describe his own skill. This description would then be 

appropriately formalised and built into an automatic controller.   

       The problem with this approach is that the skill is sub-cognitive and the operator is 

usually only capable of describing it incompletely and approximately. The operator's 

descriptions are not operational in the sense of being directly translatable into an automatic 

controller. Such difficulties of skill reconstruction through introspection in crane control were 

experimentally studied in (Urbančič and Bratko, 1994; Bratko and Urbančič 1999). 

 

Given the difficulties of skill reconstruction through introspection, an alternative approach is 

to identify the skill from the manifestation of the skill. The skill is manifested in the form of 

traces of the operator's actions. One idea is to use these traces as examples for Machine 

Learning, and extract operational models of the skill by Machine Learning techniques. This is 

also known as behavioural cloning (Michie 1993; Michie et al. 1990).  

 



One goal of behavioural cloning is to generate good performance clones, that is those that can 

reliably carry out the control task. Such clones can replace the original human operator. Often 

it turns out that a clone, while carrying out the task in a similar style to the operator, actually 

performs better and more consistently than the operator.  

 

Performance improvement is, however, not the only goal of behaviour cloning. Another 

important goal is to generate meaningful clones, in order to help us to understand the 

operator's skill. Understanding what exactly a human operator is doing and why may be of 

practical importance. We may capture the skill of an outstanding operator and transfer it to 

less gifted operators.  

 

The operator's control strategy should ideally be understood in terms of goals, sub-goals, 

plans, feedback loops, causal relations between actions and state conditions etc. These 

conditions are to be stated in terms of information that is easily accessible to the operator, e.g. 

visually. It can be argued that such information should be largely qualitative, in contrast to 

numerical. In the next section we show how qualitative descriptions of control skills can be 

induced by QUIN from operator’s control traces. 

 

 

Looking for qualitative patterns in dynamic behaviours 

 

Figure 5 shows an execution trace of a human operator controlling a simulated crane. This 

was one of the most successful (in terms of time to complete the task) human controls among 

a number of human subjects that in an experimental study learned to control this crane 

simulator. In particular, this operator was able to afford large accelerations, causing large 

swing of the load, because he was capable of controlling the swing and reducing it when 

approaching the goal position.  

 

Formally, the task of behavioural cloning is: Given a trace such as that in Figure 5, find the 

operator’s “control strategy”. That is: Find a rule that for any given dynamic state of the crane 

determines appropriate control actions. The possible actions are the horizontal control force 

Fx acting on the carriage, and the vertical control force Fy pulling the rope. Formally this 

means, find two functions 
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Figure 5: Execution trace in time of operator L. 

 

        Fx = Fx( X, V, Fi, DFi, L, LV) 

        Fy = Fy(X, V, Fi, DFi, L, LV) 

 

where X, V, etc. are the state variables of the dynamic system (carriage position, carriage 

velocity, rope angle, angular velocity, length of the rope and length velocity).  

 

In the qualitative approach to this task we first try to identify the control strategy qualitatively. 

We look for qualitative patterns in the execution trace data that tell us something about how 

the operator controls the system. For example, one qualitative property that is easy to see in 

this trace is that initially, when X is small and increasing, the velocity V is also small and 

increasing. This relation can be written as V = M+(X) (V is a monotonically increasing 

function of X). Notice that this qualitative statement does not tell anything about the precise 

numerical values of the two variables X and V. But it does tell us that initially, to start the 

crane moving, the carriage velocity is to increase.  

 

Other, more subtle properties of the operator’s strategy that QUIN detected in the data of 

Figure 5 are shown in Figure 6 (the tree on the right). These properties tell us how the 

operator goes about controlling the swing. Also, such properties induced from traces of 

different operators point out qualitative differences in the control styles of the operators. 

 



Figure 6 shows two qualitative trees induced by QUIN from control traces of operators S and 

L. Operator S controls the crane very cautiously, avoiding large velocities and accelerations, 

and therefore never producing large swinging of the load. This conservative strategy is 

reliable, but not very efficient. It is slow and requires large time to complete the task of 

transferring the load from a start to a goal. In contrast to this, operator L is more adventurous 

and does not dodge large accelerations. This causes large swing, but operator L can afford this 

because he is capable of confidently reducing the swing when necessary. This enables L to 

achieve much shorter completion times than S.  

 

 
 
 
 
 
 
 
 

              X ≤ 20.7                                                 X ≤ 29.3 
 
    yes                       no                            yes                          no 
 
V = M+(X)           X ≤ 60.1             V = M+,+,-(X,Fi,DFi)         DFi ≤ -0.02    
 
                  yes                      no                                      yes                  no 
 

              V = M-(X)          V = M+(Fi)                             V = M-(X)      V = M-,+(X,Fi)
 

Figure 6: Left: Qualitative strategy of operator S; Right: Qualitative strategy of operator L.  
The trees show how the target carriage velocity qualitatively depends on the carriage  
position X, rope angle Fi and rope angular velocity DFi. 

 

Figure 6 nicely exposes the differences in the control styles of both operators. Although their 

corresponding qualitative trees have similar structure, they significantly differ in the QCFs in 

the leaves. Looking at the corresponding QCFs, it is obvious that S’s conservative strategy is 

much simpler than that of L. For example, the left-most leaf of the left tree in Figure 6 shows 

that, at the starting stage of the task  when X is small, S just keeps increasing velocity (in a 

cautious way) and does not pay attention to the rope angle. This is expressed by the constraint 

in the left-most leaf V = M+(X) (when carriage position X is increasing, the target carriage 

velocity is also increasing). Only much later, when close to the goal, S starts paying attention 

to the angle. This can be seen in the right-most leaf of S’s tree which says V = M+(Fi). This 

principle of controlling the swing can be intuitively explained as: when the rope angle is 

increasing, that is the load swinging to the right, accelerate the carriage to “follow” the load 

and thus reduce the angle. Operator L, on the other hand, considers the angle and angular 

velocity already at the early stage: the left-most leaf of L’s tree says that the carriage velocity 

should depend also on the rope angle Fi and angular velocity DFi, as well as on X. 

 



As in the case of the anti-sway crane, “qualitative clones” cannot be directly applied to the 

control of the crane. Again, we need a transformation of the QCFs into real-valued functions. 

This time, the natural optimisation criterion is the task completion time. It should also be 

noted that the trees in Figure 6 only suggest the control actions indirectly. Namely, a tree only 

determines the desired velocity and not the control force. The reconstruction of skill therefore 

also requires the learning of a simple local model of the crane’s dynamics. This model is then 

used to determine a control force that achieves the desired velocity. The resulting “indirect 

controllers” (Šuc, Bratko 2000a) carry out the task in style that is qualitatively equal to that of 

the corresponding human operators, but typically perform better in terms of the evaluation 

criterion (Šuc 2001).   

 

 

Learning models in terms of qualitative differential equations 

 

So far we have discussed the learning of qualitative models represented as qualitative trees. In 

this section we will look into learning models expressed as Qualitative Differential Equations 

(QDEs). There have been a number of attempts at automatically constructing QDE models 

from examples of system’s behaviour. In the remainder of this paper we will review this 

work. For completeness we first give a brief introduction to QDEs. 

 

QDEs are an abstraction of ordinary differential equations. In simulation based on QDEs, time 

is usually treated differently than other variables. An example is the QSIM qualitative 

simulation algorithm (Kuipers 1986; 1994) which is largely based on the assumption that 

variables in the QDE model behave continuously and smoothly in time. QDE models are 

usually written as sets of constraints of the following types: 

 

     Y = M+( X)  Y is a monotonically increasing function of X 

     Y = M-( X)             Y is a monotonically decreasing function of X 

     add( X, Y, Z)    Z = X + Y 

     minus( X, Y)          Y = -X 

     mult( X, Y, Z) Z = X * Y 

     deriv( X, Y) Y = dX/dt 

 



All these constraints are applied to “qualitative states” of variables rather than on variables’ 

numerical values. For example, such a qualitative state of variable X can be: positive and 

increasing in time, written as: X = (pos,inc).  The possible directions of change are “inc” (for 

increasing), “std” (for steady), and “dec” (for decreasing). The add(X,Y,Z) constraint is 

satisfied, for example, by the following qualitative states: X = (pos,inc), Y = (pos,inc), Z= 

(pos,inc). For some values of X and Y, Z is non-determined. So if X=(pos,inc) and 

Y=(neg,dec), then Z can be (pos,inc), or (zero,inc), or (pos,std), or (neg,inc), etc.  

 

A QDE model is defined by a set of variables, their possible qualitative values, and a set of 

constraints among these variables. The problem of learning QDE models from example 

system behaviours is: given qualitative behaviours of a set of observed variables, find a QDE 

model, that is a set of qualitative constraints that are consistent with the given behaviours.  

 

The basic QDE learning algorithm, introduced by Coiera (1989) in his program 

GENMODEL, constructs a model from examples as follows: 

 

1. Construct all the syntactically possible constraints, using all the observed variables (that is 

those appearing in the example behaviours) and the given repertoire of types of qualitative 

constraints.  

 

2. Evaluate all the constraints constructed in step 1 on all the qualitative system’s states in the 

given example behaviours. Retain those constraints that are satisfied by all the states, and 

discard all other constraints. The set of retained constraints constitute the induced qualitative 

model.  

 

It is possible to induce, using this simple method, correct models for some simple systems, 

such as the U-tube or the spring-mass oscillator.  For example, consider a possible, somewhat 

simplified scenario of learning a qualitative model of the U-tube with GENMODEL. The U-

tube system consists of two containers A and B, connected at the bottom by a thin pipe. So the 

three components form a U-shape. Suppose that initially there is some water in container A 

while container B is empty. The difference between the two water levels, LevA and LevB, 

causes a positive flow from A to B. Thus LevA will be decreasing and LevB increasing, until 

both levels become equal, and the flow becomes zero. This behaviour can be stated 

qualitatively as a sequence of three qualitative states of the three variables (Figure 7). 



        LevA                    LevB                Flow 

        (pos,dec)           (zero,inc)          (pos,dec) 

        (pos,dec)           (pos,inc)            (pos,dec) 

        (pos,std)            (pos,std)            (zero,std) 

 
 

     Figure 7: Qualitative behaviour of the U-tube. 

        

Now assume that this behaviour in time was observed through measurements. GENMODEL 

will generate the possible qualitative constraints among the three observed variables, and find 

that three of these constraints are satisfied in all three observed qualitative states. These three 

constraints in conjunction constitute the model induced by GENMODEL: 

 

     LevB = M-( LevA),  add( LevB, Flow, LevA),  deriv( LevB, Flow) 

 

This is actually a correct model of the U-tube. However, in general the GENMODEL 

algorithm is very limited because it relies on some strong assumptions: 

 

(1) That all the variables in the target model are observed, so they explicitly appear in the 

example behaviours. The problem is, what to do if not all the variables in the target model are 

observed. In such a case we say that a variable that should appear in the model is “hidden” 

(that is, it is not mentioned in the example behaviours). GENMODEL does not handle hidden  

variables. 

 

(2) The approach is biased toward learning the most specific models in the sense that these 

models contain all the possible constraints that are satisfied by the example data. There is of 

course no guarantee that all these constraints should actually be part of the target model. 

 

(3) The resulting model is assumed to apply to the complete state space of the dynamic 

system. This is not appropriate for the cases when the system can be in more than one 

“operating region”. For example, consider water level increasing in a container. When the 

level reaches the top of the container, the level can no longer keep increasing, and the system 

starts behaving according to a different law. 

 



The difficulty with hidden variables can be illustrated by the U-tube example when the two 

levels LevA and LevB are observed only. The GENMODEL algorithm finds that the only 

constraint satisfied by all the states in the example behaviour is:  

 

     LevB = M-(LevA) 

 

This model is under constrained. It allows for example an obviously impossible behaviour 

when LevA becomes (zero,std) and at the same time LevB is (pos,std). The GENMODEL 

algorithm cannot find a more specific model (that is one with more constraints) because such 

a model requires the introduction of new variables. Therefore a more general algorithm has to 

reconstruct also the “hidden” variables, for example the flow in our case. Say and Kuru’s 

(1996) QSI algorithm introduces new variables as follows. It hypothesises the existence of a 

new variable, and constructs a possible qualitative constraint between this variable and 

existing variables. Such a constraint qualitatively defines the new variable. So QSI can in this 

U-tube example introduce a new variable, X, by constructing the constraint deriv(LevB,X). 

QSI executes the GENMODEL algorithm iteratively. In the second iteration, when X has 

been introduced, QSI will find three satisfied constraints: 

 

      LevB = M-( LevA),  add( LevB, X, LevA),  deriv( LevB, X) 

 

In this way QSI discovers the hidden variable X that precisely corresponds to the flow of 

water. This model only allows the given observed behaviour, so QSI stops here and outputs 

this as the final result.   

 

Generally, QSI iteratively introduces new variables, which enables the addition of further 

constraints to the model. Each successive model is therefore more specific, that is, it allows 

only a subset of behaviours of the more general models. In successive iterations, the “depth” 

of model also increases. The depth of a model is defined as the maximal depth of a variable in 

the model. The depth of a variable is determined by the way the variable was introduced.  The 

observed variables have depth zero. A new variable is introduced with a constraint in which 

the new variable appears together with at least one old variable.  The depth of the new 

variable is one plus the depth of the old variable. These iterations stop when the model is 

“sufficiently specific”. A model is accepted as sufficiently specific when it only allows an 



acceptable number of behaviours. The user of QSI has to specify an acceptable degree of 

behaviour branching allowed by a model, which is related to the generality of the model. 

In this way QSI rather nicely determines an appropriate number of new variables, and thus 

achieves an appropriate generality of the model.  

 

In essence, the problem of defining just the “right degree of generality” of a model arises 

always when models are learned from positive only examples. This is the case in both 

GENMODEL and QSI, as well as in several other systems including MISQ (Richards et al. 

1992)  and QOPH (Coghill et al. 2002). Since there are no negative examples given, the 

completely unconstrained model (empty model, with no constraints) is consistent with the 

learning data. Such a model, although consistent with the observations, is of course useless. 

Therefore such models should be avoided by an appropriate learning bias, which should 

prevent useless, although consistent hypotheses. All the above mentioned systems are biased 

toward selecting a most specific model. GENMODEL simply selects the most specific model 

constructed from the given types of constraints and the observed variables. This is where 

GENMODEL stops, because it does not introduce new variables. However, it is not always 

possible to construct a sufficiently specific model just using the observed variables. MISQ 

(Richards et al. 1992) is similar to GENMODEL, but it introduces new variables aiming at a 

connected model; that is a model in which all the observed variables are connected by chains 

of constraints in which new variables may appear.  The connectedness requirement is of 

course merely a heuristic that may not result in the intended model. The QSI system controls 

the introduction of new variables in a more general way that results in a more sophisticated 

learning bias: QSI constructs the most specific model using the observed variables and all the 

new variables up to the maximal depth. The depth is determined by the acceptable branching 

of the model. The model has to be sufficiently deep to prevent excessive branching. In this 

respect QSI makes a kind of an implicit closed world assumption, although this assumption is 

only enforced “softly”. Namely, the QSI algorithm treats the states in the given example 

behaviours as positive examples, and the siblings of these states as potential negative 

examples.  

 

The learning from positive only examples in this context is often considered as an advantage 

of a learning system because the observations are supposed to come from nature which only 

provides positive examples. We cannot observe in nature things that are not possible. 

However, this advantage of learning from positive only examples is not so clear. As 



mentioned above, QSI makes a kind of closed world assumption by which it considers some 

things that were not observed, effectively as negative examples. Also, to compensate for the 

lack of negative examples, these algorithms adopt the bias toward the most specific models, 

which may also be debatable. On the other hand, the user (e.g. an expert) may well be able to 

specify negative examples on the basis of the background knowledge and the general 

understanding of the problem domain. So the restriction to the learning from positive only 

examples does not seem to be really necessary in practice.  

 

Let us further discuss the situation regarding the availability of negative examples. Since 

nature can only provide positive examples, negative examples have to come from some other 

source, most naturally from a domain expert. It is sometimes considered that it is not realistic 

to expect that the domain expert be capable of providing negative examples, unless the expert 

already knows the target model completely. But then, if the model is already known, there 

would be no point in learning a model from data. We believe that such a view is mistaken, 

because it assumes that the expert either knows the right model completely, or has no idea at 

all. However, model building in practice is usually between these two extremes. The expert 

normally does have some ideas about the domain (often referred to as “background 

knowledge”), but these are insufficient to immediately put together a completely correct 

model. The incomplete expert’s knowledge can often be expressed in terms of negative 

examples: the expert just states what he or she believes can surely not happen. For example, 

in the case of modelling a U-tube, the modeller may not be able to define a complete and 

correct model. Still, he may be easily capable of stating, by means of negative examples, that 

the amount of water in a container cannot be negative, and that the total amount of water in 

the whole system is constant. Such use of incomplete knowledge through negative examples 

can also be illustrated by program writing, a task similar to modelling. Building models, 

executable through simulation, actually is a kind of program writing where a “program” is 

interpreted by the simulation software. Consider a programmer writing a program to sort lists. 

Although the programmer may not be quite capable of writing down a completely correct 

program, he may still be able to confidently provide negative examples: the result of sorting 

the list [ 3, 1, 2] is not [ 2, 1, 3], nor is it [ 1, 2].  

 

In addition to negative examples, the expert may also be able to specify some specific 

background knowledge that may be useful in the learning of qualitative models in the 

particular domain. Inductive Logic Programming (ILP) is the machine learning framework 



that ideally suits this situation. The following is the ILP problem formulation that applies to 

the learning of qualitative models from background knowledge BK, QDE constraints QC, and 

sets POS and NEG of positive and negative examples respectively. Given BK, QC, POS and 

NEG, find a model M such that: 

 

       For each example P in POS:  BK & QC & M    |--   P 

       and for each example N in NEG:  BK & QC & M   |-\-   N 

 

Once the problem is so formulated in logic, a general purpose ILP learning program can be 

applied. Bratko et al. (1991) used such an ILP system GOLEM in an experiment to induce a 

model of a U-tube from positive and negative examples. Although this exercise was impeded 

by some technical limitations of GOLEM, it showed the advantages of using ILP: (a) it was 

not necessary to develop a special purpose learning program for QDE learning, and (b) since 

GOLEM introduces new variables itself, there was no special care needed in respect of hidden 

variables. Another advantage that comes automatically with ILP is the learning of models 

with multiple operating regions. General purpose ILP programs generate multiple clause logic 

programs, so each clause may cover one operating region. The QOPH system (Coghill et al. 

2002) also relies on using such a general ILP program called Aleph (Srinivasan 2000). QOPH 

does remarkably well with introducing new variables, although this relies on a number of 

heuristics that need further study.  

 

The programs mentioned above learn qualitative models from given examples of qualitative 

behaviours. In an actual application, it is more likely, however, that the observed data are 

numerical. Most of these programs require a transformation of such numerical data into 

qualitative behaviours. Some of the above discussed approaches (Say and Kuru, 1996; Coghill 

et al. 2002) also include such a transformation. It is not easy to do this well, specially when 

there is noise in the numerical data. Džeroski’s and Todorovski’s (1995) QMN program is 

interesting in that it builds QDE models directly from numerical data, avoiding such a 

numerical-to-qualitative transformation. Program SQUID (Kay et al. 2000) is also relevant in 

this respect. It learns “semi-quantitative” models (a combination of QDEs with numerical 

elements) from numerical data. Another idea to handle numerical data is to apply QUIN in 

combination with QDE learning. 

 



The QDE learning programs reviewed above were usually tested on small experimental 

domains, and rarely on problems of realistic complexity. Probably the most impressive 

application on real-life data is described by Hau and Coiera (1997). Their system transforms 

signals measured in time into qualitative behaviours which are input into GENMODEL. They 

applied this system to actually measured cardio vascular signals from a number of patients 

and induced, from these data, qualitative models characterising individual patients. Another 

ambitious application oriented work is Mozetič’s program QuMAS (Bratko et al., chapter 5) 

which learned models of the electrical system of the heart capable of explaining many types 

of cardiac arrhythmias. QuMAS did not use QDE constraints as modelling primitives, but a 

set of problem-specific logical descriptions used by what would now be recognised as an ILP 

learning system. 

 

Conclusions 

 

In this paper two paradigms of learning qualitative models were reviewed: the learning of 

qualitative trees, and the learning of QDE models. Learning qualitative models in comparison 

with traditional, numerical approaches to automated modelling or system identification, 

should in general have the following advantages: (a) better comprehensibility, thus providing 

better insight into the mechanisms in the domain of investigation; (b) qualitative learning may 

be possible when numerical approaches are not, because qualitative models are at a higher 

abstraction level and should require less data to learn because just qualitative relations are to 

be determined, and not precise quantitative dependences. 

 

The learning of qualitative trees (in combination with Q2Q transformation) has been shown in 

a number of case studies to be competitive with traditional quantitative methods even in terms 

of criteria usually intended for quantitative methods. In addition to offering a comprehensible 

model, qualitative trees define a space for numerical optimisation among qualitatively 

equivalent solutions. A deficiency of qualitative trees might be that they explicitly define 

static relations only. For some applications, an extension of this approach towards explicit 

treatment of time would be useful. This would better support explanation of phenomena that 

progress in time. 

 

A number of systems exist for learning of QDE models. Their development demonstrates 

improvements in respect of several rather intricate problems involved in the learning of QDE 



models. It seems that further progress is still required in several respects. These include: better 

methods for transforming numerical data into qualitative data, targeted explicitly towards the 

particular qualitative modelling language; deeper study of principles or heuristics associated 

with the discovery of hidden variables, the generality and the size of models; more effective 

use of general ILP techniques. 

 

Automating qualitative modelling is generally regarded to be very important for the 

application of qualitative modelling techniques. There are some very encouraging 

experimental applications of learning qualitative models from data. One example is the 

induction of patient-specific models from the patients’ measured cardio vascular signals (Hau 

and Coiera 1997). In another example, the QUIN program was recently experimentally 

applied within the Clockwork project to an industrial task in a way that was not thought of 

before. The German car simulation company INTEC wanted to simplify their car wheel 

suspension model for efficiency reasons. A qualitative model of the suspension system was 

obtained with QUIN from simulation data. This qualitative model was then transformed into a 

simplified numerical model through the Q2Q transformation. In this way a simplified 

numerical model was obtained that has the same qualitative behaviour as the original model, 

but is computationally much more efficient. In this experiment, preserving qualitative fidelity 

proved to be useful with respect to numerical accuracy of the so-obtained simplified model. It 

was not possible to obtain similar numerical accuracy with standard numerical learning 

techniques that pay no attention to qualitative properties. 

 

 In general, however, the impact of qualitative model learning techniques on the practice of 

qualitative modelling has been rather slow. This is particularly surprising in the view of 

enormous increase in the past decade of machine learning applications in other areas 

(Michalski et al. 1998). There are several probable reasons for this slow impact of machine 

learning on the practice of qualitative modelling: 

(1) Relatively weak awareness of the existing work in the learning of qualitative models. 

(2) Hypothesis languages used in learning qualitative models (such as QDEs) are relatively 

complicated; therefore the use of machine learning in qualitative modelling is comparatively 

more demanding for the user than in other typical applications of machine learning. 

(3) The use of existing methods for learning qualitative models is impeded by lack of 

technical maturity (robustness, scalability, predictability).  

 



Improvements of methods for learning qualitative models along the lines mentioned above 

would alleviate these difficulties. 

 

Acknowledgements 

 

This work was partially supported by the Slovenian Ministry of Science, Education and Sport, 

and the European Commission (Clockwork project). We thank M. Valašek and Z. Šika of the 

Czech Technical University for assistance with the “anti-sway” controller. We also thank the 

editors B. Bredeweg and P. Struss of this AI Magazine special issue, and the anonymous 

referees for useful comments. 

 

 

References 

 

Bratko, I., Mozetič, I., Lavrač, N.. (1989) KARDIO: A Study in Deep and Qualitative 

Knowledge for Expert Systems. Cambridge, MA: MIT Press. 

 

Bratko, I., Muggleton, S., Varšek, A. (1991) Learning qualitative models of dynamic systems. 

Proc. Inductive Logic Programming ILP-91, Viana do Castelo, Portugal, pp. 207-224. Also 

in: Inductive Logic Programming (ed. S. Muggleton) Academic Press 1992, pp.. 437-452.  

 

Bratko, I., Urbančič, T. (1999) Control skill, machine learning and hand-crafting in controller 

design. In: Machine Intelligence 15: Intelligent Agents (eds. K. Furukawa, D. Michie, S. 

Muggleton), pp. 130-163, Oxford University Press, 1999  

 

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J. (1984) Classification and Regression 

Trees. Monterey, CA: Wadsford. 

 

Coiera, E. (1989) Generating qualitative models from example behaviours. DCS Report 8901, 

Dept. of Computer Sc., Univ. of New South Wales, Sydney, Australia. 

 

G. M. Coghill, S. M. Garrett and R. D. King (2002) Learning Qualitative Models in the Presence 

of Noise,   QR'02 Workshop on Qualitative Reasoning, Sitges, Spain 2002. 

 



Džeroski, S., Todorovski, L. (1995) Discovering dynamics: from inductive logic 

programming to machine discovery. J. Intell. Information Syst., 4:89-108. 

 

Hau, D.T., Coiera, E.W. (1997) Learning qualitative models of dynamic systems. Machine 

Learning, 26: 177-211. 

 

Kuipers, B. (1986) Qualitative simulation. Artificial Intelligence, 29: 289-338. 

 

Kuipers, B. (1994) Qualitative Reasoning. Cambridge, MA: MIT Press. 

 

Kay, H., Rinner, B., Kuipers, B. (2000) Semi-quantitative system identification. Artificial 

Intelligence, 119: 103-140. 

 

Michalski, R.S., Bratko, I., Kubat, M. (1998, eds.) Machine Learning and Data Mining: 

Methods and Applications. Wiley. 

 

Michie, D. (1993) Knowledge, learning and machine intelligence. In: Intelligent Systems (ed. 

L. Sterling), pp. 2-19. New York: Plenum Press. 

 

Michie, D., Bain, M., Hayes-Michie, J. (1990) Cognitive models from subcognitive skills. In: 

Knowledge-Based Systems in Industrial Control (eds. M. Grimble, J. McGhee, P. Mowforth), 

pp. 71-99. Peter Peregrinus. 

 

Quinlan, J.R. (1992) Learning with continuous classes. Proc. Fifth Australian Joint Conf. on 

Artificial Intelligence, Hobart, Tasmania. World Scientific, pp. 343-348. 

 

Quinlan, J.R. (1993)  C4.5: Programs for Machine Learning. Morgan Kaufmann.  

 

Richards, B.I., Kraan, I., and Kuipers, B.J. (1992) Automatic abduction of qualitative models. 

Proc. Tenth National Conf. Artificial Intelligence, 723-728. 

 

Say, A.C.C, Kuru, S. (1996) Qualitative system identification: deriving structure from 

behavior. Artificial Intelligence, 83: 75-141. 

 



Srinivasan, A. (2000) Aleph web site: web.comlab.ox.ac.uk/oucl/research/areas/mach-

learn/Aleph/aleph_toc.html 

 

Šuc, D.  (2001) Machine Reconstruction of Human Control Strategies. Ph. D. Thesis, Univ. of 

Ljubljana, Faculty of Computer and Information Sc. 

 

Šuc, D.,  Bratko, I. (2000a) Skill modelling through symbolic reconstruction of operator's 

trajectories. IEEE Trans. on Systems, Man and Cybernetics, Part A, 30: 617-624 

 

Šuc, D., Bratko, I. (2000b) Qualitative trees applied to bicycle riding. ETAI Journal 

(Electronic Transactions on Artificial Intelligence), Vol. 4 (2000), Section B, pp. 125-140. 

http://www.ep.liu.se/ej/etai/2000/014/.  

 

Šuc, D., Bratko, I. (2001) Induction of qualitative trees. Proc. ECML’01 (European Conf. 

Machine Learning), Freiburg, Germany. Springer-Verlag, LNAI Series. 

 

Šuc, D., Bratko, I. (2002) Qualitative reverse engineering. Proc. ICML'2002 (Int. Conf. 

Machine Learning), Sydney, Australia, July 2002  

 

Urbančič, T., Bratko, I. (1994) Reconstructing human subcognitive skill through Machine 

Learning. Proc. ECAI-94 (European Conf. AI), Amsterdam, 1994, 498-502.  

 

Valašek, M. et al.: Position and velocity control of gantry crane. Proc. of Mechatronic 96, 

Guimaraes 1996, pp. I-203 - I-208 

 

Wellman, M. P. (1991) Qualitative simulation with multivariate constraints. Proc. 2nd Int. 

Conf. on Principles of Knowledge Representation and Reasoning (J. Allen, R. Fikes and E. 

Sandewall, eds.) San Mateo, CA: Morgan Kaufmann. 

 


	Learning qualitative models
	A qualitative reverse engineering application of QUIN

