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Abstract

Image categorization involves the well known difficul-
ties with different visual appearances of a single object,
but introduces also the problem of within-category varia-
tion. This within-category variation makes highly distinc-
tive local descriptors less appropriate for categorization.
In this paper we propose a family of local image descrip-
tors, called probabilistic patch descriptors (PPDs). PPDs
encode the appearance of image fragments as well as their
variability within a category. PPDs extend the usual local
descriptors by modelling also the variance of the descrip-
tors’ elements, e.g. pixels or bins in a histogram. We apply
PPDs to image categorization by using machine learning
where the features are the matching scores between images
and PPDs. We experiment with two variants of PPDs that
are based on complementary local descriptors. An interest-
ing observation is that combining the two PPD variants im-
proves categorization accuracy. Experiments indicate ben-
efits of modelling the within-category variation and show
good robustness with respect to noise.

1. Introduction

Image categorization, addressed in this paper, is a super-
vised learning problem with the goal of classifying new, un-
seen images into appropriate image categories by learning
from a limited set of labelled images. Recognizing cate-
gories of objects, in addition to the well-known problems in
computer vision, introduces the problem of within-category
variation. Namely, considerably different objects are often
in the same category. This makes the standard methods,
which ignore the within-category variation, difficult to use.

Since images of the same category can differ substan-

tially, but usually have some similar details, local image
descriptors seem particularly interesting for image catego-
rization. Many excellent local descriptors, including SIFT
[9] and PCA-SIFT [7] have been developed recently. Their
comparison is given in [11]. Although some of the best
rated local descriptors are used for categorization task, it
seems that they are not general enough and often too dis-
tinctive to be used as off-the-shelf tools for categorization
tasks. Recently, some authors proposed region detectors
designed for categorization task [6] and adaptations of lo-
cal descriptors for more general recognition [12].

In this paper we introduce a family of local image
descriptors called probabilistic patch descriptors (PPDs).
PPDs encode the appearance of image fragments as well
as their variability within a category. We apply PPDs to
image categorization by using machine learning where the
features are the matching scores between images and PPDs.

Ideas related to modelling the variability of patch de-
scriptors appeared also in previous work [1, 4]. In contrast
to our work, stable parts are assumed to be inside the re-
gions representing an object. Our approach considers also
parts of object’s background, when this is informative for
categorization, e.g. grass for categorizing cows.

Section 2 gives the idea of probabilistic patch descrip-
tors. Categorization method is proposed in Section 3. Sec-
tion 4 gives experimental evaluation using images of five
categories and study the robustness of the method with re-
spect to noise and occlusions. Finally we give conclusion
and some directions for further work.

2. Probabilistic Patch Descriptor (PPD)

Probabilistic patch descriptor represents a set of similar
patches by modelling probabilistic distributions of the el-
ements of patch descriptors. PPD augments each element



Figure 1. Three RGB-PPDs modelling a nose,
a trunk , and a wheel of an airplane.

of the original “non-probabilistic”patch-descriptor with its
variance. In the most simple case, where a patch is de-
scribed by values of pixels, a PPD models probabilistic dis-
tributions of pixels’ values. If a patch is described by a his-
togram, the PPD models also the variance in every bin. In a
PPD each element of the patch descriptor is assumed to have
a normal probability distribution N (µi, σi), i = 1 . . .Ne.
Here Ne is the number of elements of the patch descriptor.
Therefore a PPD named R can be given as a pair of vectors
(µR, σR) denoting means and standard deviations of R.

In this paper we experiment with two probabilistic patch
descriptors: RGB- and RIFT-PPD. RGB-PPD is based on a
patch represented by a vector of pixels. In all our experi-
ments we used patches of size 15 × 15. Since RGB-PPD
models three color components, the number of elements of
the patch descriptor is Ne = 15 × 15 × 3. Examples of
three RGB-PPDs, modelling parts of an airplane are given
in Figure 1. These RGB-PPDs were learned from images of
the airplane category as described later in this section. Each
PPD is described by two images illustrating its means (im-
ages in upper row) and variances (images in bottom row).
Variances for R, G, and B color components are not shown
separately, but instead the sum of all three components is
shown. Darker colors in images of the bottom row denote
smaller variances of spatially corresponding pixels in im-
ages above them. For example the airplane’s nose has rela-
tively small variance (dark colors in the bottom left image),
but there is more variability in pilot’s window that can be of
different shape or color, or placed at different positions.

RIFT-PPD is based on RIFT, a variant of a SIFT descrip-
tor [9]. SIFT models a patch at the scale-space peaks in a
series of difference-of-Gaussian images. Such keypoints are
highly distinctive and very sensitive to variability in appear-
ance. This is prohibitive for localization of parts common
to objects of one category, where we usually have high vari-
ability. Accordingly, our initial results with categorization
using SIFT-PPDs did not give favorable results. To avoid
the problem with high sensitivity of SIFT keypoints, we use
boundaries [10] as the criteria to detect the interest points.
Therefore, RIFT descriptors are actually SIFT descriptors

that are calculated from patches centered at the boundary
points in an image. Since RIFT (Rotational Invariant Fea-
ture Transform) is not applied on a patch at scale-space ex-
treme it loses invariance to scale, but it still preserves in-
variance to rotation.

2.1. PPD Matching Score

The idea of PPD matching score is to model the proba-
bility that corresponding elements of two PPDs have a sim-
ilar value. As elements are treated as random variables, this
probability depends on their distribution and is generally
smaller with higher variances of elements. Since we assume
that PPD elements are independent variables, an appropriate
measure of matching between PPDs T and R is the product
of probabilities that values of corresponding elements differ
by less than some small constant δ (see Eq. 1). For small δ,
the integral in Eq. 1 has an approximate analytical solution
that is linearly dependent on δ. We can discard δ, because
we only need to compare matchings of different PPDs and
we do not need the exact probability of matching. There-
fore we can use the solution of the integral to define the
matching score m(T, R) between two PPDs:
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The above matching score defines a probability-based sim-
ilarity measure between two PPDs. Matching score is also
used to estimate the similarity of a PPD and an image. In
this case, the matching score refers to the highest match-
ing score over all possible positions of a patch descrip-
tor on the image. This usually requires to calculate “non-
probabilistic” patch descriptors for all possible patch posi-
tions on the image and transform these “non-probabilistic”
patch descriptors into PPDs by assuming a small standard
deviation σnoise in values of the patch descriptors elements.
We refer to the image patch descriptor with the highest
matching score as the most similar image patch descriptor.

For example, the matching score of a RGB-PPD and an
image refers to the highest matching score over all possible
image patches having the same size as the RGB-PPD. To
compute the similarity between a RGB-PPD and an image
patch we assume that image pixels’ values are distributed
normally having small standard deviations σnoise and the
pixels’ values as means. In our experiments, where pixels’
take on values from [0, 255], we used σnoise = 1. This
means that we assume that images are not very noisy.



2.2. Learning PPD

PPDs are learned for each category separately by ran-
domly selecting a set of initial patches, calculating the cor-
responding patch descriptors and estimating the variances
of the patch descriptors’ elements. To obtain an initial set
of patches for one category we select at random a number
of patches from images of the selected category. Each ini-
tial patch is transformed into a so-called initial PPD I by
setting µI to the patch descriptor values and setting σ I to
σnoise. For each initial PPD we form a set of image patch
descriptors that are most similar to the initial PPD. This set,
denoted by M, contains the most similar image patch de-
scriptor from each image of the category.

An initial PPD and the corresponding set of the most
similar patch descriptors are then used to form a PPD that
is described with vectors µ and σ. The PPD retains means
of the initial PPD, that is µ = µI . Variances are calculated
from the set of most similar image patch descriptors. Here
the contribution of each image patch descriptor M ∈ M is
weighted by the average probability that two corresponding
elements from I and M differ by less than δ.

In this way, we describe each category with a set of
PPDs. As they are generated from randomly selected ini-
tial patches, some of these PPDs might be similar or do not
discriminate well between different categories. Selection of
representative PPDs is described in Section 3.

2.3. Accuracy Benefits of PPD

To show that modelling of within-category variation is
beneficial for image categorization we compared the cat-
egorization accuracy using RGB-PPDs and their variant
that does not model the variability, called constant-variance
RGB-PPDs where the variance of all pixels’ components is
set to a constant σnoise = 1.

We used images of five categories from Caltech-101
database [3]. These categories are airplanes, cars, motors,
faces, and leopards. For each category we used 100 images,
50 for training and 50 for testing. RGB-PPDs were learned
as described in the previous section. In this way we gener-
ated 50 RGB-PPDs of size 15×15 pixels for each category.

For categorization we used threshold classifiers that de-
cide if an image belongs to a category based on a single
PPD. Each threshold classifier consists of a PPD and a
threshold value. If the matching score between an image
and the PPD is above the threshold, the image is classified
in the category of the PPD. In the training phase the thresh-
old is set to the value of the matching score that recognizes
the category of the PPD with the minimal error. Each of the
250 RGB-PPDs (50 RGB-PPDs from each of the five cat-
egories) was used with the other four categories, giving al-
together 1000 threshold classifiers that were trained on the

training images. In the same way, we also learned 1000
threshold classifiers that use constant-variance RGB-PPDs.

These threshold classifiers were evaluated on the test-
ing images. The average errors are 29.1% for RGB-PPDs
and 32.2% for constant-variance RGB-PPDs. According
to the t-test the mean errors using RGB-PPDs are signifi-
cantly better at 1% significance level and also at consider-
ably smaller significance levels. This suggests that mod-
elling the within-class variability of patch descriptors is
beneficial for image categorization.

3. Categorization using PPDs

Our method for image categorization learns PPDs from
training images and use PPDs to construct features that are
then used for classification using standard machine learning
methods. PPDs used in our experiments were RGB-PPDs,
RIFT-PPDs and their combination denoted by RGB&RIFT-
PPD. We decided for the combination of RIFT and RGB
based PPDs, since these two descriptors are somehow com-
plementary. RGB based PPDs emphasize homogenous re-
gions. Here colors play an important role. The boundaries
between regions inside a RGB-PPD are usually the parts
with the largest variation and consequently the shapes of
regions are just slightly indicated. On the other hand, RIFT-
PPDs are calculated from grayscale images and discard the
color information, but use a kind of gradient that captures
the shapes of edges.

To prevent overfitting, training images are divided into
two sets, called PPD-learning images and PPD-matching
images. PPD-learning images, consisting of 50% randomly
selected images are used to learn PPDs. Other images,
called PPD-matching images are used to calculate matching
scores between images and PPDs. These matching scores
are the features for machine learning. In this way, features
are calculated on an independent set of images, not on the
images they were generated from.

The method has the following four steps. First, given
PPD-learning images of a category, learn a set of PPDs as
described in Section 2.2. Second, the set of representative
PPDs is selected by removing similar PPDs and PPDs that
do not match their category significantly better than other
categories. Second, we remove similar PPDs. For each
pair of PPDs of the same category we calculate the average
probability that two corresponding elements of the patch de-
scriptor match and remove one PPD, if this probability is
above 0.01. Third, we retain only PPDs that have signifi-
cantly higher matching scores on images from its category
than on images of at least one other category. To compare
matching scores corresponding to two categories we used
the two-sample t-test at 1% significance level. In this way,
we get the set of representative PPDs that are in the fourth
step used to compute features for standard machine learning



methods. Namely, for each PPD-learning image we form a
feature vector by computing the matching scores of the im-
age with all representative PPDs. These feature vectors and
the corresponding category labels are then used to learn a
classifier with machine learning methods. Images with un-
known category labels, i.e. test images, are categorized by
the learned classifier based on corresponding features. In
our experiments we used a Support Vector Machine (SVM)
with linear kernel.

This method requires that objects from one category are
of similar size on all images. It does not require alignment,
segmentation or other preprocessing steps. Except for ex-
treme changes, image sizes do not affect the success of the
method as far as objects of same category are of similar size.
Because PPDs are usually generated from slightly different
object scale, some scale invariance is already incorporated
into the model. Robustness to changes in scale is increased
by treating images at three different scales: 90% 100% and
110% of the original image size. This requires to compute
matching scores using images at three different sizes as de-
scribed in Section 2.1. It should be noted that some scale
robustness is already incorporated into PPDs by modelling
the variability of a patch descriptor. If a detail of an object
category often appears in different sizes, this is reflected
also in the variance of the corresponding PPD.

4. Experiments using PPDs

Here we describe experimental results with categoriza-
tion using images of five categories from the Caltech-101
Object Categories database [3]. For comparison of results
we used categories that were frequently used by other au-
thors. These are images of airplanes, cars, motors, faces,
and leopards. We did not do any alignment, segmenta-
tion or other preprocessing. PPDs used in our experi-
ments were RGB-PPDs, RIFT-PPDs and their combination
RGB&RIFT-PPDs. With RGB&RIFT-PPDs each image is
described both with features based on RGB-PPDs and fea-
tures based on RIFT-PPDs. The features obtained from
PPDs are used for image classification using SVM.

In experiments we used 125 randomly selected images
of each category. 100 images were always used for train-
ing, other 25 as a test set. All the results were obtained by
five times five-fold cross-validation. Since the method ran-
domly selects initial patches from PPD-learning images, we
initially studied also the variations in results that come from
using different initial patches. We noticed that the variations
in the results obtained by different (random) selection of
initial patches are very small and that the selection of initial
patches does not effect the categorization accuracy much.

When learning PPDs we used 200 initial patches from
PPD-learning images of each category. On average 20% of
initial PPDs of a category were discarded due to the simi-

Figure 2. Error rates for all combinations of 2,
3, 4, and 5 categories using RGB-PPD, RIFT-
PPD and their combination RGB&RIFT-PPD.

larity. With RGB-PPDs, after removing non-discriminative
PPDs there was about 100 representative RGB-PPDs left in
each category. With RIFT-PPDs this number was about 130.

The matching scores of RGB-PPDs and images are cal-
culated efficiently using convolution. Still, this is the
most time-consuming operation since a large number of the
matching score computations is required. On a Pentium III
computer it requires about a minute to calculate features for
one image of size 200×200×3. With RIFT-PPDs comput-
ing the matching scores is much faster, since RIFT descrip-
tors are calculated only at sampled boundary points.

4.1. Experimental Results

We experimented with five image categories. In all ex-
periments we separately give error rates for categorization
into two, three, four and five categories. All these results
are averages over all possible combinations of k categories,
i.e. average of

(
5
k

)
combinations.

Figure 2 gives the error rates for RGB-PPDs, RIFT-PPD,
and their combination called RGB&RIFT-PPDs. These re-
sults are given also in Table 1. The first observation was that
all three methods perform quite well. For example, with the
categorization into two categories, the average error rates
for all three methods are less than 3.2%. As expected,
the error rates slightly increase with increasing number of
categories. The results with RIFT-PPDs are slightly bet-
ter than with RGB-PPDs, although the improvements are
not significant. The most notable are the improvements of
RGB&RIFT-PPDs with respect to both other methods. This
happens consistently with different categories and differ-
ent number of categories. The average error rates fall from
5.86% and 5.36% for RGB- and RIFT-PPD, respectively, to
only 2.71% for the combination of both PPD types. The
improvements of RGB&RIFT-PPDs with respect to both
RGB-PPDs and RIFT-PPD are significant at 1% signifi-
cance level with all different numbers of categories we used,
i.e. two, three, four and five categories.



Table 1. Average error rates (in percentages)
with different variants of PPDs, with added
noise, cropped images and reduced training
set. Standard deviations are in the brackets.

PPD type 2categ. 3 categ. 4 categ. 5 categ.
RGB 3.2 (2.6) 5.2 (3.1) 6.7 (2.3) 8.3 (2.2)
RIFT 2.7 (2.6) 4.7(3.0) 6.2 (3.4) 7.7 (3.6)
RGB&RIFT 1.4 (1.8) 2.3 (1.9) 3.3 (1.8) 3.7 (1.2)

RGB, 5% 3.1 (2.5) 5.1 (3.0) 8.9 (2.2) 8.9 (2.2)
RGB, 20% 11.3(14.9) 14.7 (10.7) 18.7 (7.3) 21.7 (3.5)
RGB, crop 6.2 (5.4) 10.1 (5.2) 13.5 (4.7) 16.0 (4.8)
RGB, red. 3.3 (4.2) 5.3 (3.3) 9.1 (3.5) 10.2 (2.5)

With RGB-PPDs we evaluated also the robustness with
respect to noise, occlusions and small training set. To assess
the robustness with respect to noise, we corrupted the test
images with 5% and 20% of uniformly distributed noise.
Here, the noise percentage denotes the percentage of noise
range in the range of the pixel’s value.

The occlusions were simulated by cropping 40% of im-
ages from left or from right side. The results given in Table
1 (row RGB, crop) show that the method is very robust with
respect to noise in images and occlusions. In the last exper-
iment we used only 25 images with no noise for training.
The results in Table 1 (last row) show that the error rates
increase only slightly when compared to using 100 training
images. These results show that the method is well-suited
also for learning from a small number of images.

4.2. Comparing Results with Related Work

Here we compare the results with other authors that used
the same image database. These authors give the results
with the “recognition of a single category”. Namely, they
consider a binary learning problem where an image is clas-
sified either in a single object category or as so-called back-
ground. This is different than our method, which is de-
signed to classify into a set of predefined categories. These
differences in the learning problem require some consider-
ation when comparing the results.

To compare the results we added a background category
consisting of 125 images that were selected at random from
so-called “Background-Google” category. In contrast to
other categories we did not use PPD-learning images for
this category, since we did not expect to learn any represen-
tative PPDs for the background category. Therefore, SVM
uses only the matching scores with PPDs of the other five
categories to classify an image in one of the six categories.

Table 2 gives the five-fold cross-validation true-positive
rates for each of the six categories. The table also gives pub-
lished equal-error rates (EER) of related methods. The re-

Table 2. The published EERs for category
recognition problems with related meth-
ods and the true-positive rates for the six-
category problem with our method

airp. cars mot. fac. leop. bg.
[4], EER 90 90 93 96 90 -
[15], EER 68 - 84 - - -
[8], EER - 94 94 - - -
[14], EER 84 90 93 83 - -
[5], EER 98 99.9 - 99.9 - -

RGB&RIFT- 94 94 94 94 89 89
PPDs, TP rates

sults in Table 2 should be compared carefully. First, our re-
sults were obtained with categorization into six categories,
i.e. five original categories plus background category. The
results of other authors are obtained with binary classifiers.
In general, binary classification is more robust. Second, the
table gives true-positive rates for our method, but EER with
other methods. EER is found by varying a threshold defin-
ing when an image is classified as an object category or as
background and can be compared to true-positive rate when
the categories have the same number of images. Although
the results cannot be directly compared, they suggest that
our method is comparable to the state-of-the-art methods
also when used in the presence of a background category,
for which the method was not designed in the first place.

We compared our method also to the method of Csurka
et al. [2] that is designed for categorization into multiple
categories, and is in this sense more similar to our method.
When we repeated our experiments with their experimental
settings, the average error rate was 3.6% with our method
and 3.9% with their method.

5. Conclusions

We presented probabilistic patch descriptors that are de-
signed for categorization of still images. These descrip-
tors are based on the usual patch descriptors, but explicitly
model the within-category variation of a patch descriptor.
Experimental results in Section 2.3 show that modelling the
within-category variation is beneficial for image categoriza-
tion. PPDs are learned in an unsupervised manner for each
category separately. They are applied to image categoriza-
tion by machine learning using features calculated as the
matching scores between images and PPDs.

We developed two variants of probabilistic patch de-
scriptor, called RGB-PPD and RIFT-PPD. The two PPD
variants give in a way complementary descriptions of an
image fragment. The combination of these two descriptors



significantly improves categorization accuracy. This is in it-
self an interesting, although not a surprising result. Except
for the two methods [13, 5], that use grayvalues and dif-
ferent moment descriptors with a Boosting algorithm, we
are not aware of any other work on combining different lo-
cal descriptor for categorization of still images. The experi-
mental results demonstrate benefits of modelling the within-
category variation, show that the method gives results that
are comparable to the state-of-the-art categorization meth-
ods, can cope with noise and occlusions, and learns well
also from a small set of training images. As information of
spatial arrangement of PPDs is not a part of the model, the
proposed approach can also handle objects with non-rigid
shape, e.g. leopards.

We plan to experiment also with PPDs based on other
image descriptors, e.g. moments or steerable filters, that
show best matching performance among low dimensional
descriptors [11], and to explore the perspectives of combin-
ing different local descriptors for image categorization.
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