Qualitatively Faithful Quantitative Prediction

Dorian Suc®*, Daniel Vladusi¢?, Ivan Bratko®

& Faculty of Computer and Information Science, University of Ljubljana
Trzaska 25, 1000 Ljubljana, Slovenia

Abstract

We describe an approach to machine learning from numerical data that combines
both qualitative and numerical learning. This approach is carried out in two stages:
(1) induction of a qualitative model from numerical examples of the behaviour of a
physical system, and (2) induction of a numerical regression function that both re-
spects the qualitative constraints and fits the training data numerically. We call this
approach Q? learning, which stands for Qualitatively faithful Quantitative learning.
Induced numerical models are “qualitatively faithful” in the sense that they respect
qualitative trends in the learning data. Advantages of Q? learning are that the in-
duced qualitative model enables a (possibly causal) explanation of relations among
the variables in the modelled system, and that numerical predictions are guaranteed
to be qualitatively consistent with the qualitative model which alleviates the inter-
pretation of the predictions. Moreover, as we show experimentally the qualitative
models guidance of the quantitative modelling process leads to predictions that may
be considerably more accurate than those obtained by state-of-the-art numerical
learning methods. The experiments include an application of Q? learning to the
identification of a car wheel suspension system — a complex, industrially relevant
mechanical system.

Key words: Automated model building, System identification, Machine learning,
Qualitative reasoning, Learning qualitative models, Numerical regression,
Inductive learning

* Corresponding author.

Email addresses: dorian.suc@fri.uni-1j.si (Dorian Suc),
daniel.vladusic@fri.uni-1j.si (Daniel Vladusic),
ivan.bratko@fri.uni-1j.si (Ivan Bratko).

Preprint submitted to Artificial Intelligence 19 December 2003

1 Introduction

It is generally accepted that qualitative models are easier to understand and
reason about than quantitative models. Qualitative models thus provide a
better basis for the explanation of phenomena in a modelled system than
numerical models. In this paper we describe an approach to automated mod-
elling which combines the learning of qualitative and quantitative models from
behaviour data of the modelled system. In our approach, the quantitative
learning is constrained by the induced qualitative model so that the result-
ing quantitative model is in a sense guaranteed to be qualitatively consistent
with the learning data. We call this approach () learning, which stands for
Qualitatively faithful Quantitative learning.

)? learning has the following advantages, some expected and some possibly
less expected. The induced qualitative model enables nice causal interpreta-
tion of the relations among the variables in the system. This is precisely as
one would expect from a qualitative model. More surprisingly, however, we
also show by experiments with ()? learning that the qualitative model guides
the quantitative modelling process in such a way that usually the resulting
numerical predictions are considerably more accurate than those provided by
state-of-the-art numerical modelling methods.

Thus the main message of this paper is that a combination of methods for
qualitative and quantitative system identification has good chances to attain
significant improvements over numerical system identification techniques, in-
cluding techniques of numerical machine learning, such as regression trees [5]
and model trees [18], or locally weighted regression [1]. The potential im-
provements are in two respects: first, the predictions are consistent with the
qualitative properties of the modelled system, and in addition they are also nu-
merically more accurate. The qualitative consistency is particularly important
for the expert interpretation of induced models. So a domain experts expla-
nation of how the system works is not obscured by qualitative inconsistencies
in numerical predictions.

The idea of combining qualitative and quantitative machine learning for sys-
tem identification is in this paper carried out in two stages. First, induce
a qualitative model from system’s numerical behaviour data (training data)
with program QUIN (overviewed in Section 3). Second, induce a numerical
regression function that both respects the qualitative constraints and fits well
the training data numerically. We call this second stage the Qualitative to
Quantitative transformation, or Q2Q for short. Our Q2Q method is described
in Section 4.

To underline the importance of qualitative fidelity, we illustrate in Section 2

some problems that numerical learners typically have in respect of qualitative
consistency. Sections 3 and 4 describe program QUIN and the Q2Q transfor-
mation. Section 5 presents (Q? learning in the cannonball flight domain and
further illustrates qualitative difficulties of numerical learners. In Section 6 we
present a case study in applying Q? learning to the problem of modelling a car
wheel suspension system. This is a complex mechanical system, and its mod-
elling has good practical relevance in car design industry. Section 7 contains
discussion and comments on related work, including approaches to learning
qualitative models that may enable alternative approaches to the realization
of ? learning.

2 Qualitative difficulties of numerical learning

Consider a simple container of cylindrical shape and a drain at the bottom. If
we fill the container with water, the water drains out. Water level monotoni-
cally decreases, until it reaches zero. Suppose we fill the container with water,
and measure initial outflow ®y = ®(to) and the time behaviour of water level
h(t). Since this is a rather simple behaviour, one would naturally expect that
standard techniques of numerical machine learning should be able to fairly
accurately predict time behaviour of water level if enough learning examples
are given. Quite surprisingly, even in such simple cases, the usual numerical
predictors can give strange and qualitatively unacceptable predictions. We il-
lustrate the problems with a simple experiment, using well-known techniques
for numerical prediction: model trees and locally weighted regression.

In our experiment we used container outflow simulation data to evaluate how
different numerical predictors learn the time behaviour of water level. The
outflow from a container is @(t):c\/% , where ¢ is a parameter depending
on the area of the drain. For simulation we used Euler integration h(t + At) =
h(t) - ®(t)At, where At=0.1 seconds and c=1.25. We used six example sets,
generated with different initial water levels and initial outflows ®y=>5 + ic,
i=1,..,6. Each example set had 20 examples (¢, h(t), ®g) corresponding to 19
seconds of simulation.

We used the Weka [30] implementations of locally weighted regression [1]
(LWR, for short), and M5 regression and model trees [18] to learn the time
behaviour of level h given the initial outflow, i.e. h(t)=f(t,Py). We carried
out a 6-fold cross validation. Each time one example set was used as a test
set, and the other five sets (5 x 20 = 100 examples) for learning. As an exam-
ple consider the case when the test set was the set with ®,=7.5. In this case
M5 with the default parameters induced a model tree with 9 leaves. Figure 1
shows the learning examples and the M5 prediction of level h(t) on the test set.
Note that M5 predicts that water level increases between time points t=9 and

(o=12.5

=1

Fig. 1. M5 predictions of water outflow: empty circles are M5 predictions of level
h(t) on the test set with &y = 7.5. Other symbols indicate the learning examples.
Note that M5 predicts that water level increases between time points 9 and 10.

t=10, and that the water level is below zero at the end. The same happens
if we change the pruning parameter of M5. These predictions are of course
qualitatively unacceptable as water level can never increase. Also, there are
no learning examples where water level increases.

One might think that this is an isolated weird case or or a bug in M5. But it
is not. LWR makes a similar qualitative error on the test set with &y, = 11.25,
when it predicts that water level increases at t=>5. Of course, LWR predictions
depend on the parameters of the LWR method, i.e. the number of nearest
neighbors and the weighting function. However, often the appropriate LWR
parameter setting that does not produce qualitative errors on one container,
results in qualitative errors when learning from similar data but with different
area of the drain. Often, the errors are even more obvious if we make predic-
tions at the edges of the space covered by the learning examples, i.e. using
as test set &g = 6.25 or &y = 12.5. Regression trees make similar qualitative
errors.

Another example where numerical predictors make similar qualitative errors
is described in Section 5.2. Based on this and other experiments, we believe
that other numerical predictors also make qualitative errors, at least in more
complex domains. This might be quite acceptable in applications where we just
want to minimize numerical prediction errors. But often it is also important
to respect qualitative relations that are either given in advance or hidden in
the data. Ignoring them results in clearly unrealistic predictions that a domain
expert would find disturbing and impossible to explain. The idea of this paper
is to use qualitative constraints, either given or induced from data, to avoid
qualitatively incorrect predictions. As it turns out, such constraints typically
improve the accuracy of numerical prediction as well.

3 Qualitative learning with QUIN

QUIN (Qualitative Induction) is a learning program that looks for qualitative
patterns in numerical data. QUIN expresses such qualitative patterns by qual-
itative trees. In this section we give a brief introduction to QUIN, sufficient
for the understanding of the rest of the paper. More detail can be found in
[27-29].

Induction of qualitative trees is similar to the induction of decision trees.
The difference is that in decision trees, the leaves are labelled with values of
the dependant variable, whereas in qualitative trees the leaves are labelled
with what we call qualitatively constrained functions that define qualitative
constraints on the dependant variable. The dependant variable is also called
class and the other variables are called attributes.

3.1 Qualitatively constrained functions

Qualitatively constrained functions (QCFs for short) are a kind of mono-
tonicity constraints that are widely used in the field of qualitative reasoning
[15,11,17,12,16]. QCFs are also a generalization of the qualitative constraint
M, as used in QSIM [17].

A qualitatively constrained function M®'»*m where s; € {4, —}, stands for
an arbitrary function of m continuous attributes that respects the qualita-
tive constraints given by signs s;. The qualitative constraint given by sign
s; = + (s; = —) requires that the function is strictly increasing (decreasing)
in its dependence on the i-th attribute. We say that the function is positively
related (negatively related) to the i-th attribute. M*® %™ represents any func-
tion which is, for all ¢ = 1,... m positively (negatively) related to the i-th
attribute, if s; = 4+ (s; = —).

A simple example of QCF is MT(X) that stands for an arbitrary monoton-
ically increasing function of X. In general, QCFs can have more than one
argument. For example, M~ (X,Y") stands for a function that monotonically
increases in X and monotonically decreases in Y. If Z=M"~(X,Y’) and both
X and Y increase, then according to this constraint, Z may increase, decrease
or stay unchanged. In such a case, a QCF cannot make an unambiguous pre-
diction of the qualitative change in Z.

QCF's are similar to ocg-all predicate suggested by Forbus [11] and multivariate
monotonic function constraints by Wellman [31].

Fig. 2. A qualitative tree induced from a set of examples for the function
Z = X? — Y2, The rightmost leaf, applying when attributes X and Y are positive,
says that Z is strictly increasing in its dependence on X and strictly decreasing in
its dependence on Y.

3.2 Learning qualitative trees with QUIN

QUIN takes as input a set of numerical examples and looks for qualitative
patterns in the data. More precisely, QUIN looks for regions in the data space
where monotonicity constraints hold. Such a set of qualitative patterns are
represented in terms of a qualitative tree. As in decision trees, the internal
nodes in a qualitative tree specify conditions that split the attribute space
into subspaces. In a qualitative tree, however, each leaf specifies a QCF that
holds among the input data that fall into that leaf. For example, consider a set
of data points (X,Y,Z) where Z = X? — Y2 possibly with some noise added.
When QUIN is asked to find in these data qualitative constraints on Z as a
function of X and Y, QUIN generates the qualitative tree shown in Figure 2.
This tree partitions the data space into four regions that correspond to the
four leaves of the tree. A different QCF applies in each of the leaves. The tree
describes how Z qualitatively depends on X and Y.

QUIN constructs a tree in the top-down greedy fashion, similarly to decision
tree induction algorithms. At each internal node of the tree, QUIN considers
all possible splits, that is conditions of the form X < T for all the attribute
variables X and effectively all possible thresholds 7" with respect to X. Each
such condition partitions the training data into two subsets. QUIN finds the
“best” QCF for each subset according to an error-cost measure for QCFs.
Then the best split is selected according to the minimum description length
principle [21], which minimizes an error-cost of QCFs. The error-cost of a QCF
with respect to an example set S is defined so that it takes into account the
encoding complexity of the QCF, the consistency of the QCF with S, and the
“ambiguity” of the QCF with respect to the data in S (the more unambiguous
qualitative predictions the QCF can make in S the better).

A more elaborate description of the QUIN algorithm and its evaluation on a
set of artificial domains is given elsewhere [27-29]. Empirical results show that
QUIN can handle noisy data and, at least on simple domains, produces quali-

tative trees that correspond to the human intuition. In [27,24] QUIN has been
used for qualitative reconstruction of human control strategies in dynamic do-
mains such as controlling a crane or riding a bicycle. In both domains some
surprising and non-trivial aspects of human control skill have been induced.
In [25] QUIN was used to reverse engineer a complex industrial controller
for gantry cranes. Experimental comparison with induction of regression and
model trees show advantages of the qualitative approach both in terms of ex-
planation of the studied artefact, and in terms of the control performance of
the induced model of the artefact.

4 Q2Q transformation

In this section we describe one approach to the qualitative-to-quantitative
transformation (Q2Q for short). Given a set of numerical data and a qual-
itative tree, Q2Q attempts to find a regression function that fits the data
well numerically, and also respects the qualitative constraints in the tree. We
say that such a regression function is qualitatively consistent with the tree.
In fact, Q2Q finds a qualitatively consistent regression function with good fit
separately for each leaf in the tree. The overall regression function is then
obtained by gluing together the regression functions for the leaves.

4.1 Reifying QCFs

Q2Q transforms the QCF in each leaf into a numerical function that respects
the qualitative constraints imposed by the QCF in the leaf. We also call such
transformation reifying, and the resulting regression function is called reifica-
tion of a QCF. Of course, there are infinitely many possible reifications of a
QCF, but we seek for reifications that fit numerical data well. For simplicity
we consider only piece-wise linear reifications. This allows to learn numeri-
cal function values at a number of equidistant points in the attribute space
and use linear interpolation to predict function values at other points. This
procedure is described in the following section.

An interesting question is which attributes should be used in a QCF reification.
Namely, a QCF usually mentions only a subset of the attributes that appear in
the learning data. Generally, QCF's only mention those attributes that suffice
to explain qualitative changes of the class variable. When reifying a QCF,
a reification of the QCF should obviously be a regression function of all the
attributes that appear in the QCF. But, as we want to optimize the numerical
fit of the regression function with the data, it might appear that the inclusion
of other attributes could improve the fit with the data. Our Q2Q procedure,

explained later in this section, however only produces reifications that include
the attributes that appear in the QCF. This is justified by the somewhat
surprising continuous reifications theorem: considering continuous regression
functions only, the only possible reifications of a QCF are functions of only
those attributes that appear in the QCF. The sketch of the proof is given
below. Our choice to limit reifications to continuous functions only is justified
by the fact that all our application domains were continuous.

For the sketch of the continuous reifications theorem we will consider the
QCF z = M (x). We will show that, even if there is another variable y in the
modelled system, continuous reifications of the QCF can only be functions of
x, and not y as well. We will show that reifications of the form z = f(z,y),
where function f is continuous in x, are not possible. We show that such
functions cannot satisfy the monotonicity constraint.

For f to really be a function of both x and y, there must exist some values
xy of x and yy, yo of y such that: f(x1,y2) # f(21,91). That is: f(z1,92) =
f(z1,01) +d,d #0.

The monotonicity constraint z = M7 (x) requires that: Vi, o, y1, 90 @ 1 <
xe = f(x1,y2) < f(xo,y1). Let zo = a1 + €, € > 0, and let us choose ¥,
and yo so that: f(x1,y2) = f(x1,y1) + d, d > 0. The monotonicity constraint
requires: Ve > 0 : f(z1,y1) +d < f(x1 + €,y1). Since f is continuous in z,
f(x14+€,y1) = f(z1,y1) + 0 where § is a function of € such that if € approaches
0 then 0 also approaches 0. The monotonicity constraint can thus be written
as: Ve > 0: f(x1,11) +d < f(xy,51) + 6. We had d > 0, s0: V§ : 0 < d < 6.
This is obviously false because ¢ can be made arbitrarily small by choosing e
sufficiently small.

4.2 Q2Q transformation procedure

The Q2Q procedure is as follows. First, we partition the learning examples
according to the leaves of the qualitative tree. These subsets are then used
for learning qualitatively consistent functions in the corresponding leaves. Let
us focus on learning a qualitatively consistent function for some particular
leaf. Suppose we have a leaf with the qualitative constraint y=M"(x). We
then have to find a function that is monotonically increasing in z and fits
the data well. One straightforward solution, used in Q2Q), is to divide the
range of variable x with a number of equidistant points (i.e. {1, x9, ..., 2, }) in
which we learn from the given data the function values y. The points x; and
T, coincide with the z-wise extreme learning data points that fall in the leaf.
The result is a set of pairs {(z1,y1), ..., (Tn, yn) } that defines a piece-wise linear
function which can be easily checked for compliance with the given qualitative

constraint. It is only necessary to check if the following constraint is satisfied:
Vie{l,n—1}: z; < 2441 = ¥ < yir1. If this constraint is satisfied then
we have an acceptable regression function. If the constraint is not satisfied
then we retry the learning of the y-values by modifying the parameters of
the learning method, etc. This procedure can be generalized to qualitative
constraints of any dimension.

In our implementation the function values y; are determined with a stan-
dard version of locally weighted regression (LWR) [1], which uses Gaussian
weighting function. Thus the transformation has two parameters: the number
of equidistant points per dimension N and the kernel size of the Gaussian
weighting function K. In the experiments in this paper we limited the choice
of N to N € {3,4,5,6} and K to K € {0.3,0.4,..,0.8}. The choice of these
candidate sets for N and K is discussed in Section 4.4. All possible combi-
nations of these two parameters (4x6=24) define the space of all candidate
piece-wise linear functions for each leaf that is exhaustively searched by Q2Q
to find functions that satisfy given qualitative constraints. For each leaf, Q2Q
selects among these qualitatively consistent piece-wise linear functions one
that has the best fit with the data that fall into this leaf. In order to avoid
over-fitting and to determine the quality of the candidate functions, we used
internal 4-fold cross-validation for each pair of N and K in every leaf. The
cumulative error (defined as the root mean squared error or RMSE for short)
over all 4 test folds defines the quality of the particular pair of parameters.

This regression method may be viewed as LWR guided by the constraints
imposed by a qualitative tree. These constraints enforce an appropriate degree
of fit with the data, and the relative importance of near neighbours vs. distant
training data points. This aims at preventing overfitting or underfitting. An
allowed degree of fit is such that the resulting regression function preserves
the qualitative features in the original data.

Theoretically, this method has a problem with the guarantee of actually finding
a solution. It is theoretically possible that none of the candidate regression
functions is qualitatively consistent with the QCEF in the leaf. This is discussed
in the following section.

4.3 Qualitative consistency of Q20) regression functions

In general, the regression procedure above is not guaranteed to find a quali-
tatively consistent regression function. There is no explicit mechanism in this
procedure to guarantee the existence of a qualitatively correct solution in all
situations under conditions specified above. Of course, if a solution is found,
it is guaranteed to be qualitatively consistent with the given qualitative tree.

50 .

45 o

40 o
Y35 .

30 1 o

257 °

20

X

Fig. 3. Data and the corresponding QUIN’s tree. Although the consistency of the
induced qualitative tree with the data is perfect, we can also observe the globally
dominant decreasing trend in the function value. This observation gives us two pos-
sible qualitative explanations: the induced qualitative tree (shown on the right) and
a hand-crafted one. The latter is based on our observation of the overall decreasing
trend, and consists of a single leaf with the QCF y = M~ (x).

In our experiments, however, a situation in which this procedure would fail
to find a qualitatively consistent regression function never occurred. To assess
the robustness, we also tried to synthetically construct critical test situations
in which our Q2Q procedure would fail. In one such test we sampled the
learning data from three straight lines which have a special property that was
intended to confuse the Q2Q procedure: all three lines are locally increasing,
but the overall trend of the data is decreasing. The data and the corresponding
qualitative tree induced by QUIN are shown in Figure 3. As QUIN tries to find
locally monotonic trends it correctly identifies the splits between the three lines
and marks all the functions in the leaves as monotonically increasing. Finding
qualitatively consistent functions was in this case trivial for our Q2Q method.
We now tried the more difficult case: we discarded QUIN’s qualitative tree
and replaced it by the overall decreasing trend in the data. This decreasing
trend, coded as a qualitative tree, consists of a single leaf with the QCF
y = M~ (z). Using this qualitative constraint and all the 15 data points with
our Q2Q method, also results in a qualitatively consistent regression function.
Regression functions obtained in both experiments are presented in Figure 4.

This experiment illustrates how qualitatively consistent regression functions
in the leaves of a tree can be successfully found by the presented Q2Q method
for different qualitative interpretations of the same data. In the foregoing
example we presented two possible qualitative explanations for the same data
set. Different explanations may also be caused by noise in data — a situation
which is quite common in real-world modelling. In the first explanation the
qualitative tree was fully consistent with the underlying data, which made the
task of finding qualitatively consistent regression functions in the leaves trivial.
On the other hand, the hand-crafted global qualitative constraint was not fully
consistent with the underlying data. In this case LWR which is used for the

10

50 1
45 1
40 1

VER
30 1

25

20

e Truey
+ Q?predicted y

50 1
45 1
40 1

VKR
30 1

25

o Truey
+ QPpredicted y

20

— T
11 15

Fig. 4. The graphs present the data and the Q2Q-learned regression functions based
on two different qualitative explanations of the data. Left, the case with a three leaf
qualitative tree; right, the case with a single leaf qualitative tree saying y = M~ (x).

learning of the regression function values at the points on the underlying grid
has to overcome the conflict between the global decreasing constraint and
the locally increasing trends in the data. Nevertheless the search through the
space of possible LWR parameters yielded qualitatively consistent regression
function.

It is instructive to study how the changes in K and N effect the qualita-
tive behaviour of LWR functions. In the first case — the qualitative tree with
three leaves, all combinations of N and K produce qualitatively consistent
regression functions. This result is expected, as the data in all three leaves
are completely qualitatively consistent with the corresponding QCFs. In the
second case, where we only have one (global) qualitative constraint, we no-
ticed three regions in the space of N and K regarding qualitative correctness
of regression functions. In the first region, where K and N are small, LWR
constructs qualitatively correct reifications. In the second region, where K is
still small and N is larger, the algorithm does not produce any qualitatively
correct reifications. In the third region, where K is larger, reifications are
qualitatively consistent for all V.

Explanation for such behaviour of Q2Q is as follows. In the first region where
K and N both small, we only have one regression point for each of the three
locally increasing sections of the learning data. Hence the constructed reifica-
tions are qualitatively correct (the overall trend is decreasing). In the second
region, where N is larger, we have more regression points for each locally
increasing section of the learning data. That is the reason for qualitatively
incorrect reifications. In the third region, we are taking advantage of larger
K that enables global view of the data (decreasing), therefore reifications are
qualitatively correct again.

This example and experience from other cases provide evidence that the pre-
sented Q2Q method, although simple, is suitable for most practical cases. In

11

spite of this, it is still theoretically possible that the described Q2Q procedure
would fail to find a qualitatively consistent regression function. Although in
our experiments this never happened, we also developed an alternative, more
complex Q2Q method that is guaranteed to find a qualitatively consistent
regression function [26].

4.4 Complexity of Q20 procedure

Let us consider the time complexity of reifying a QCF with D attributes where
values of parameters N and K are chosen from the sets N and K of possible
values for N and K respectively. Let the time required to answer one LWR
query be twr. Note that reifying a QCF involves a 4-fold cross-validation. So
the time complexity of reifying one QCF is: Qp = 4+|K|-> nvemathearn towr NP
As we have no influence on the number of independent attributes D, the
selection of plausible value sets for K and N, and efficient implementation
of the LWR algorithm become very important. We now discuss the choice of
candidate sets I and A in our experiments.

The candidate value sets K and N were chosen so as to maximize the probabil-
ity of constructing a qualitatively correct piece-wise linear regression function
and to minimize the computation time. We did not include extreme values of
K in I, for the following reasons. In the case of very small K, the probability
of qualitatively correct QCF is rather small, as only extremely local trends in
data are used for prediction. In the case of very high K, the numerical fit is
likely to be unsatisfactory, as we are virtually simulating ordinary linear regres-
sion. The values in the set N' were chosen in accordance with two constraints,
namely, we wanted sufficient resolution of the piece-wise linear functions and
acceptable computation time. Both constraints are addressed with the use of
interval N' = {3,4, 5,6}, as the number of grid points increases exponentially
with dimension of QCF. Hence, maximum number of grid points for QCF with
one attribute is 6, with two attribute 36, three 216 and four 1296. Limiting
the upper value to six is now evident, as 1296 is already in the order of a typi-
cal number of training examples. Increasing resolution even further would not
improve numerical accuracy nor yield significant number of qualitatively cor-
rect piece-wise linear functions. It might be better to use different sets N for
different dimensionalities of QCFs, but we have not explored this possibility.

5 An extended example: cannonball flight

As a detailed example, we here describe experiments with predicting the flight
distance of a cannonball fired at some elevation angle and initial velocity. First,

12

distance d

0
©

I\
N

Fig. 5. Cannonball flight learning examples and induced qualitative tree. The dots in
the left graph denote the learning examples. The figure on the right is the qualitative
tree for the flight distance induced by QUIN from the learning examples.

we illustrate qualitative errors made by the usual numerical predictors. Then
we describe experiments with the ? method.

5.1 Cannonball flight domain

Consider a cannonball fired at some elevation angle ¢ and initial velocity vg.
We measure the flight distance d of the cannonball. Of course, a greater initial
velocity results in a greater flight distance. However, flight distance also de-
pends on the elevation angle. The maximal flight distance is achieved by firing
the cannonball at elevation angle ¢ = 7. Qualitatively, flight distance mono-
tonically increases with elevation angle if ¢ < 7, and decreases with elevation
angle if ¢ > 7. In both cases, flight distance monotonically increases with
initial velocity. One would expect that numerical predictions would respect

these qualitative constraints when learning from noise-free examples.

Ignoring air resistance and assuming the start and the landing position of
the cannonball are at the same ground level, the flight distance is given by
d = %QSingpcos . The learning task is to learn flight distance, given the
initial velocity and elevation angle, i.e. d=f(vg, ¢). The learning examples are

the points with v = 27, where j=0, 1, 2, .., 8 and p=3, %—g, o ‘g—g for j even,
and the points with cp:g—g, . 120—(? for j odd. This gives 45 learning examples,

described with attributes vy and ¢ and class d. There was no noise in this data.
These examples are illustrated in Figure 5. Numerical accuracy and qualitative
correctness of the predictions were tested on various test example sets. Each
test example set corresponds to one initial velocity vy. A test set consists of

the examples that have the same initial velocity, but different elevation angle:
T 27 18w

$=36> 367" 36 -

A nice qualitative description of the domain is given by the qualitative tree, in-

13

d(¢) at vo=9 ks
4]
o
3]
0.1 | Q
3 5
-a- LWR pred. d (3 neighb.) |2
-O- LWR pred. d (all neigh.) | %
M5 model tree pred. d Q ;
-05 1 |-~ Trued o4
o .
10 30 50 70 ¢ [deg.] 10 30 50 70 ¢ [deg.]

Fig. 6. Typical problematic predictions by M5 and LWR for cannonball flight dis-
tance. The left graph gives predictions at vgp=3 and the right one at vp=9. The
symbols denote M5 model tree predictions, LWR predictions using 3 and all nearest
neighbors, and the true value of flight distance. LWR using all neighbors on test
example set with vg=3 correctly predicts that flight distance is first increasing and
then decreasing in . However it does not correctly predict the point of the max-
imum, and later predicts negative distance. All other predictions are qualitatively
wrong.

duced by QUIN from the described learning examples. This qualitative tree is
given in Figure 5. The left leaf that applies when ¢ < 7 has QCF M+ (v, ¢).
This says that flight distance monotonically increases with initial velocity and
with elevation angle. If ¢ > 7, then the right leaf with QCF M™~ (v, ¢)
applies. Flight distance still monotonically increases with initial velocity, but
decreases with elevation angle.

5.2 Qualitative difficulties of M5 and LWR

We used the Weka implementations of LWR and M5 regression and model
trees to learn flight distance, given the initial velocity and elevation angle, i.e.
d=f(vo, ¢). Numerical accuracy and qualitative correctness of the predictions
was tested on various test sets. A general observation was that respecting
the monotonicity in initial velocity was usually not a problem for model trees
and LWR. However, none of the induced predictors respected the qualitative
dependence on the elevation angle. These experiments are described in the
following paragraphs.

By changing the pruning parameter, M5 induced three model trees with up
to eight leaves. All of these model trees gave qualitatively wrong predictions.
They predicted that flight distance is monotonically decreasing with elevation

14

. 1d(o) at vo=3 d(e) at vo=9

-0.1 1
5
+- Q2 predicted d
-o— Trued
-0.5 1 11
10 30 50 70¢ [deg.] 10 30 50 70 ¢ [deg.]

Fig. 7. Q? predictions for cannonball flight distance. The left graph gives predictions
at vp=3 and the right one at v9p=9. The predictions are qualitatively correct and
also numerically more accurate than LWR and M5 predictions.

distance d
distance d

2 < + underlying grid of points
® LWR learned function values

Fig. 8. QCF reifications for the Cannonball example using the qualitative tree of
Figure 5. The left graph corresponds to the left leaf (¢o > %) and the right graph
for the right leaf of the qualitative tree.

angle for initial velocity vp=6. These model trees also make other qualitative
errors with different initial velocities. This is illustrated in Figure 6 that shows
predictions of a model tree with eight leaves on test example sets with vg=3
and vp=9. This model tree predicts that flight distance is constant at vy=3
and has a local minimum near ¢ = 7/6 at vo=9. We also experimented with
M5 regression trees. They give piece-wise constant predictions and make even
more qualitative errors than model trees.

Predictions by LWR significantly depend on its parameters, i.e. the number
of nearest neighbours and the weighting function. For this reason we used dif-
ferent settings of LWR parameters to make sure that the observed problems
are not due to an unfortunate choice of LWR parameters. We used all three
possible weighting functions, i.e. linear, inverse and Gaussian, and the number
of nearest neighbours that was set to three, five, ten and all. This gives al-

15

Table 1

The comparison of Q? learning, LWR and M5 on four different test sets. The Q2
learning is better than LWR and M5 not only in terms of qualitative correctness (see
Figures 6 and 7), but also in terms of numerical accuracy. Note that the parameters
of M5 and LWR were fitted to the particular test sets. In this way M5 and LWR
were given an advantage over Q? that used only learning data to set its parameters.

RMSE at Q? M5 LWR
vp = 1.0 0.0267 0.0270 0.0741
vp = 3.0 0.0385 0.1427 0.1036
vp = 6.0 0.0020 0.6079 0.0602
vp = 9.0 0.0539 0.8278 0.0645

together 12 different parameter settings. Given a particular initial velocity, it
was usually possible to find a parameter setting that resulted in qualitatively
correct prediction. However, the same LWR parameters did not give qualita-
tively correct predictions for different initial velocities. For example, none of
the 12 parameter settings resulted in qualitatively correct prediction for initial
velocities 1, 6.5 and 9. Figure 6 gives typical LWR predictions at vp=3 and
v9=9. We also experimented with our implementation of LWR that optimizes
the number of nearest neighbours at each prediction point separately, but it
also did not produce qualitatively correct predictions.

5.3 Q2 learning in the Cannonball domain

We assume the qualitative tree of Figure 5. As described in Section 4, the
learning data is first partitioned by Q2Q according to the qualitative tree.
Then QCFs of the two leaves are reified using the data in the correspond-
ing leaves to find qualitatively consistent regression functions for both leaves.
These two QCF reifications are shown in Figure 8.

To compare numerical accuracy of @Q? learning and Weka implementations of
LWR and M5 we used different initial velocities (vo=1, v9=3, vo=6 and vy=9)
that define four test sets. As described in previous section we performed an
exhaustive search through a selection of LWR and M5 parameters to find the
parameters which result in smallest RMSF on the particular test set. Note that
in this way M5 and LWR were given an advantage over our Q2Q method. The
best results of LWR and M5 are compared to the results obtained with Q? in
Table 1. Even with fitting of the parameters to the particular test sets LWR
and M5 perform inferior to Q% learning.

16

6 Learning about car wheel suspension

6.1 Intec wheel model

In this section we present an application of % learning to the modelling of a
car wheel suspension system. This is a complex mechanical system of industrial
relevance. The model and simulation software used in this experiment were
provided by Intec, a German car simulation company. The main role of the
application in this paper is to provide a controlled experiment to assess the
potentials of @Q? learning on a modelling problem of industrial complexity.
However, although the target model was already known and developing such
a model was not an issue of practical relevance, this case study was nevertheless
motivated by a practical objective. Namely, the complexity of Intec’s model
is so high that on the present simulation platform, the simulation cannot be
run in real time. Therefore the practical objective of the application of ()?
learning was to speed up the wheel simulation. The goal was thus to obtain
a simplified wheel model that would still be sufficiently accurate and at the
same time significantly simpler than the original model to allow real-time
simulation. Indeed, the simplified model obtained with ? is computationally
trivial compared with the original model.

The Intec wheel model (shown in Figure 9) is a multi-body model of a front
wheel suspension built in compliance with the physical model assuming no car-
body movement and no wheel-spin. In fact, the suspension system is modelled
as if the car-body was fixed. The flexible joints in the multi-body suspension
system that links the wheel to the car-body allow displacements in several
directions. The wheel position is given by x, y and z coordinates of the wheel
center, and the rotation angles about axes z, y and z. These are called camber
0, enforced wheel-spin angle v, and toe angle a.

The multi-body simulation software Simpack [23] was used to set up the model
and to generate simulation traces. During simulation, a number of forces and
moments are acting upon the tyre: two horizontal forces F, and F), vertical
movement (measured as elevation of the road R) and rotational moment M,.
For example, F}, is acting upon the tyre when braking, F, when driving through
corners (centripetal force) and rotational moment M, when parking the car.

6.2 Details of experiments

During the simulation, input and output variables are logged to a file called
simulation trace. We used traces of wheel simulation with different trajecto-
ries of input variables. Each trace lasted for 70 seconds, and was sampled with

17

—— FX
2500 —-— Fy
2000 | o Mz

15007 — R*1le4
1000

500

-500

0.02

0.00 *

-0.02

L . /
S o Alpha*4 [~
0] X —-— Beta
— Y-072] .. Gama/2 ‘ ‘ o

10 30 50 70 90

Fig. 9. Intec wheel model: the variables in the model (on the left) and a typical
simulation trace (on the right). Wheel position is given by z, y and z coordinates
of the wheel center, and rotation angles about axes x, ¥ and z. These are affected
by horizontal forces F, and F}, elevation of the road R and rotational moment M,
that act upon the tyre. The right figure shows a typical simulation trace. The input
variables are on the upper graph. The output variables (except z that changes the
same as road R) are on the lower graph. On z-axis is time in steps dt=0.7 seconds.
Note the complex behaviour of the output variables resulting from changes in F,
and road R.

dt=0.7 seconds. In this way a trace gives 100 examples, each example contains
10 values, corresponding to the values of four input and six output variables
at a given time. Figure 9 shows a typical simulation trace. It should be noted
that all these traces correspond to very slow changes of input variables, and
as a result the traces are illustrative mainly of the kinematics of the mecha-
nism, but not also of its dynamics. Dynamic effects in these slow behaviours
are negligible. Accordingly, the goal of learning in these experiments was a
kinematics model of the system.

The experiments reported in this paper were done using a black-box approach.
We did not use any knowledge of the model, and we did not have a direct
access to the model. The simulation traces were provided by our partners
from the Czech Technical University in the European project Clockwork (see
Acknowledgement).

In all the experiments we used 7 traces for learning with the same road profile
as in the trace of Figure 9. In the first learning trace all other three input
variables were zero. In the next three traces two of the other three input
variables were zero and one other variable (F,,F, or M,) was changing. Figure
9 shows one such trace. The remaining three traces were similar, but the
trajectory of the changing variable was different, i.e. it first increased, stayed

18

unchanged for 20 seconds, and than slowly decreased to zero. Each trace gives
100 examples, giving altogether 700 learning examples with 10 variables.

The task was to learn each of the six output variables as a function of input
variables. In this way we have six learning problems, where an output variable

is the class and the input variables are the attributes. For example, angle «
was learned as a=f (R, Fy, F,, M,).

The prediction accuracy was tested on 8 test traces, denoted by Ti, T5,..,Tx.
The first six traces traces have the same road profile as the traces used for
learning, but different profiles of one or two other input variables (F,, F,
and M,). Test trace T7 has the same road profile as the learning traces and
other three input variables change similar as F}, in the trace in Figure 9. This
trace was recommended as a critical test trace by the domain expert, who
considered it far more difficult (all four input variables change) than the first
six test traces where one or two input variables were always zero. At the final
assessment of the developed models during our visit at Intec, a domain expert
suggested the last and the most difficult test trace. In this trace, denoted by
Ty, all of the input variables have a different and a more complex profile than
the variables in the learning traces. The traces T7 and Ty are later also referred
to as the critical test traces.

6.3 Inducing a qualitative wheel model with QQUIN

QUIN was used to induce a qualitative tree for each of the six output variables,
where the input variables were the attributes. All of the induced qualitative
trees had over 99 % consistency on the learning set of examples. We say that
a QCF is consistent with a pair of example points if the QCF’s qualitative
prediction of the change in the dependent variable does not contradict the
direction of change between the two example points. The level of consistency
of a qualitative tree with the examples is the percentage of the examples with
which the tree is consistent. Consistency of 99% indicates that the induced
qualitative model fits the data nearly perfectly.

The simplest qualitative tree was induced for translation in the z-axis. This
tree only has one leaf with QCF z=M " (R). This tree has a simple and obvious
explanation. It says that z changes in the direction of the road change. If road
increases then z increases, i.e. the wheel center moves upwards. None of the
other variables has a significant effect on qualitative changes in z.

Qualitative trees for translations in x and y axes are a bit more complicated.
Since they have similar explanations we will present just the qualitative tree
for x translations, given in Figure 10. Note that x is measured in the opposite
direction to usual, i.e. positive x means wheel center moving in the direction

19

Fig. 10. Induced qualitative trees for x position of the wheel center (left qualitative
tree) and camber angle [3, i.e. the rotation around z-axis (right qualitative tree).

of car driving backwards. Both leaves of the tree have the same qualitative
dependence on F, and F), but differ in qualitative dependence on road R.
The qualitative tree says that x is positively related to force F, that acts
in the direction of x. Obviously, the wheel center position x changes (wheel
moves backward or forward) in the direction of force in z direction. Second,
x is negatively related to force F,. This means that if we push the wheels
together (we apply force in the y direction), the wheels will move forward (z
decreasing). This is not so obvious, but can be understood if we consider the
usual mechanics of wheel suspension. The qualitative dependence on road R
is a bit more complicated. The qualitative tree of Figure 10 says that x is
negatively related to R when R < 0.001. Otherwise z is positively related
to R. Consider for example that road R is negative and increasing. Since
x is negatively related to R (the leftmost leaf applies) = will decrease, i.e.
wheel moving forward. Therefore, when R increases from its minimum to its
maximum, z will first decrease and then increase, i.e. the wheel center will
first move forward and than backward.

Rotations about axes x, y and z are measured by enforced wheel-spin 7, cam-
ber 3 and toe angle «, respectively. For enforced wheel-spin v, QUIN induced
a simple one-leaf tree that says y=M"""(R, F,, F,). Note that v changes in
the direction of the tyre rotation when driving forward. Consider for example
the dependence of v on force F), that is positive during braking. Since 7 is neg-
atively related to F, increasing F), causes 7 to decrease, i.e. during braking
enforced wheel spin angle changes in the direction of the tyre rotation.

For camber angle # QUIN induced the qualitative tree given in the right hand
side of Figure 10. Similar to qualitative trees for x and y translations, the
dependence of § on road R differs in the two leaves. When R < 0.02, 3 is
positively related to road R and negatively related to R otherwise. In both
leaves (3 is positively related to F,. As we would expect, positive force from
the outside of the tyre causes positive camber.

The toe angle a, i.e. the rotation about z-axis is effected by all input variables
and is the most complicated. The induced tree is given in Figure 11. We will
omit explanation of this qualitative tree since it requires complex understand-
ing of the flexible nature of the multi-body suspension system that links the
wheel to the car-body.

20

o=M—""%(R,F,, F, M)

a=M">""NR F, F,, M,

Fig. 11. Induced qualitative tree for toe angle «, i.e. the rotation around z-axis.

Overall, as judged by our domain expert, these qualitative trees give a good
explanation of the wheel suspension system behaviour. They explain the qual-
itative relations between input and output variables. Moreover, they provide
a qualitative model of wheel suspension system that enables qualitative sim-
ulation. In this way, they enable to predict all possible qualitative changes of
output variables over an arbitrary time interval given qualitative changes of
all or some input variables. Consider for example that the car is driving over
a bump, that is road R is first increasing and then decreasing. For simplicity,
let us assume that during that period all other input variables are unchanged
and we are only interested in 3. The qualitative tree for 5 (see Figure 10) gives
the following possible behaviours of 5. If R > 0.02 then (is decreasing until
the road is increasing, and is increasing afterwards, when road is decreasing.
If R <0.02 and the top of the bump does not exceed R = 0.02 then [is first
increasing and decreasing afterwards. If R < 0.02 and the top of the bump
exceeds R = 0.02 then f is first increasing, then decreasing after R > 0.02 as
long as the road is increasing. Afterwards, when road is decreasing [is first
increasing, and decreasing after R < 0.02.

This kind of qualitative simulation enables to predict all possible qualitative
changes of output variables in time given qualitative changes of all or some
input variables. Such qualitative behaviour in time is valid for all possible
numerical changes of input variables. Numerical simulation, on the other hand,
gives precise numerical results, but these are valid just for the one given profile
of the input variables in time.

Besides explanation and qualitative simulation, the induced qualitative model
enables to improve numerical predictions, as described in the following sub-
sections.

6.4 Qualitative correctness of numerical predictors

In this section we compare qualitative correctness of Q2 predictions with the
predictions of other typical numerical learners in wheel suspension modelling.
These numerical learners are: the Weka implementation of the M5 model trees
and two versions of LWR. The first version is the Weka implementation of LWR
with the default parameters. The second version of LWR uses a similar internal

21

=== True
—— LWR predicted o
| —a— | WR-optimized pred. o
0.010 M5 predicted O
\ |-+~ Q7 predicted o
0.005 T
0.000 1=
-0.005 |
I
.0.010 1 fime (En test trace) in‘steps dt=0.7 s?c. ‘,'

10 30 50 70 90

Fig. 12. LWR, LWR with optimized parameters, M5 and Q? predictions of « on the
critical test trace Tg. With each method, o at time step ¢; was predicted according
to the values of input variables at time ¢; in the test trace.

4-fold cross-validation as used by Q2Q and described in Section 4.2. This 4-
fold cross-validation is used to set the value of LWR parameter K. Namely,
at each point of prediction four nearest training points are considered and at
each of the four neighbouring points the value of K that minimizes RMSFE
is selected. The mean value of K, weighted according to the distance of the
neighbouring point from the prediction point, is then used to predict the class
value at the prediction point.

Figure 12 shows a predicted with M5 model tree, LWR and LWR with opti-
mized parameters, on the critical test trace Ty, where all the input variables
are changing simultaneously. The figure shows that both M5 and LWR some-
times make large errors. Moreover these errors are not only numerical, but
also qualitative. Consider for example the M5 predictions at the beginning of
the trace. Here the predicted « is decreasing, but the true « is increasing.
This error could be avoided by considering the induced qualitative tree for a
given in Figure 11. At the beginning of this test trace, road R is near zero, F)
and M, are increasing, and F}, is decreasing. Since R is near zero, the middle
leaf of the qualitative tree applies. Its QCF a=M*""(F,, F,, M,) requires
increasing « since F, and M, are increasing, and F), is decreasing.

As can be observed in Figure 12, M5 and LWR often make qualitative errors.
@Q? predictions are qualitatively correct. The use of a qualitative model enables
Q? to better generalize in the areas sparsely covered by the training examples,
resulting in better numerical accuracy.

22

. Q° 0.005 1
°0.0025 1 LWR
S +0.004
}~0.0020 T ~
é 0.0015 (ZO) 0-003 1
DE: 0.0010 T 0.002
S
S 0.0005 1 0.001
N
< 0.0000 0.000 -
o B X y o B X y
o B
Q? opt. LWR Q? opt. LWR
avg. RMSE (T)-Tg) 0.00050 0.00086 0.00100 0.00273
RMSE T 0.00057 0.00115 0.00130 0.00418
RMSE Ty 0.00094 0.00153 0.00120 0.00317
x Y
Q? opt. LWR Q? opt. LWR
avg. RMSE (Ty-Tg) 0.00032 0.00054 0.00063 0.00146
RMSE T 0.00058 0.00109 0.00055 0.00259
RMSE Ty 0.00039 0.00066 0.00067 0.00179

Fig. 13. Comparing accuracy of @2 and LWR with optimized parameters: the graph
on the left shows the average RMSFE on test traces T; to Tg, the graph on the right
shows the RMSFE on the more difficult test trace T%7. These results are also given in
the table below the graphs.

6.5 Numerical accuracy of the induced models

Here we compare the numerical accuracy of LWR, M5 model trees, and Q?
learning. All the methods learned from 7 learning traces (also used for the
learning of qualitative trees) and were tested against 8 test traces described in
Section 6.2. Each of the six output variables gives one learning problem and
the accuracy was measured by RMSE. For each of the six learning problems,
corresponding to six output variables, Q% used a corresponding qualitative tree
induced by QUIN as described in Section 6.3. Q2Q transformation, described
in Section 4, was used to transform qualitative trees into numerical regression
functions.

When experimenting with M5, we noticed that it was grossly inferior both
in terms of qualitative acceptability as well as numerical error. This is illus-
trated also in the previous section. Attempts at optimizing M5’s parameters
did not help noticeably. Weka implementation of LWR did a bit better. LWR
with optimized parameters, described in the previous section, was the best

23

among standard numerical learners. For this reason, our presentation of ex-
perimental results largely concentrates on comparison between Q? and LWR
with optimized parameters.

We give the results for variables «, 3, z and y. The predictions of the remaining
variables v and z were not much affected by induced qualitative constraints
and for this reason the improvements of ()? were smaller.

The test results are divided in two groups. The first group consists of results
on simpler test traces 77, .., Ts. The results on the critical test traces 75 and
Ty are in the second and third group respectively. A domain expert considered
these two traces far more difficult (all four input variables are changing simul-
taneously) than the six test traces in the first group. The average RMSE on the
six simpler test traces are presented in the left graph of Figure 13. We can see
that even our simple Q2Q method improves the numerical prediction for all
the variables (compared to LWR). The improvements in numerical accuracy
are even greater on the critical traces 77 and Ty that are less similar to the
learning traces. The results on test trace T4 are presented on the right graph
in Figure 13. All the results are also given in the table bellow the graphs.

7 Discussion

7.1 Summary of method and experiments

In this paper we introduced a new approach to machine learning in numerical
domains, which we call Q? learning (qualitatively faithful quantitative learn-
ing). This combines the induction of qualitative properties from numerical
data and numerical regression that respects the induced qualitative proper-
ties. With continuous reifications theorem and various experiments, Q? learn-
ing was studied empirically and theoretically. We showed by an experimental
case study that Q? learning may lead to the following advantages compared
to the usual numerical learning;:

(1) Induced models tend to be qualitatively consistent with the data and
therefore have better chances to correspond to the qualitative mecha-
nisms in the domain of modelling. For example, if the amount of water
in a container is decreasing, the level of water cannot be increasing. This
is important with respect to the interpretation of induced models and
explanation of phenomena based on these models.

(2) Qualitative consistency of induced models with learning data also affects
the accuracy of the model’s numerical predictions: numerical accuracy
may be considerably improved. This was illustrated by the experimental

24

results.

Q? learning does not make any assumptions regarding the linearity of the
modelled system. Thus it is appropriate for the identification of non-linear
systems. QUIN takes into account only the ordering of the values of the vari-
ables, and not their magnitudes. For this reason it can be expected to be more
robust against noise in the data, and not sensitive to transformations of the
data that preserve the order of values. For example, the function y = = gives
rise to the same qualitative tree as y = 523, y = €7, etc.

In respect of numerical prediction accuracy, in our case study @Q? overall out-
performed all competing numerical learners. Among these, locally weighted
regression (LWR) with optimized parameters (through internal cross valida-
tion on the training set) performed best in terms of mean squared error. How-
ever its performance may sharply degrade under more difficult circumstances.
Consider LWR-optimized performance on a difficult test set (Figure 12). It
achieves excellent accuracy on the first part of this trace which is similar to
the data in the training sets. LWR-optimized accuracy there is actually better
than that of ?. However, problems begin for LWR in the second part of this
trace where the input variables start to deviate considerably from the train-
ing data, and LWR’s predictive error increases sharply. In this part of the
trace, Q* manages to largely preserve qualitative consistency with the true
behaviour, and maintains the numerical accuracy at a comparable level as in
the area densely populated by training examples. A similar phenomenom can
be observed in Figure 13, where the improvements of Q2 are greater on more
difficult test traces 17 and T3 than on other test traces that are more similar
to the learning examples.

LWR-optimized was the best among standard numerical learners, and there-
fore our presentation of experimental results largely concentrated on compari-
son between Q? and LWR. The performance of M5 was grossly inferior both in
terms of qualitative acceptability as well as numerical error. Optimizing M5’s
parameters did not help noticeably.

It should be noted that qualitatively faithful regression as carried out by the
Q2Q program is actually inferior to LWR as a regression method. Struggling to
satisfy qualitative consistency, Q2Q is limited to piece-wise linear regression
with a small number of linear segments. This numerical inferiority of Q2Q
usually turns out to be more than compensated by preserving qualitative
consistency.

In this paper, qualitative constraints for Q2Q were induced from training data
with QUIN. Alternatively, such constraints can be defined directly by a domain
expert. In such a case, studied also in [26], the Q? learning can be viewed as
an approach that enables the use of expert’s qualitative knowledge in system

25

identification.

Among the limitations of our realization of (%, the rather basic numerical
regression method in Q2Q should be noted. This method allows sharp changes
in variable values (discontinuities in the variables’ derivatives) at the borders
between leaves of a qualitative tree. Future work should include a method
for smoothing such discontinuities. A recently developed Q2Q transformation
method, called Qfilter [26] and based on quadratic programming addresses this
problem. Qfilter has some advantages over the Q2Q method presented in this
paper, but it has higher computational complexity and its implementation is
more demanding.

In the present paper, Q*-learning was applied to automated system modelling
from data. In our earlier work [27,25], a very simple kind of Q2Q transforma-
tion was applied to transforming qualitative control strategies into executable
control strategies.

7.2 Related work

The idea of QM-FS modelling [2,3] is close in spirit to @Q* learning introduced
in this paper. QM-FS modelling integrates qualitative modelling techniques
with fuzzy logic systems. In QM-FS modelling, a domain expert supplies a
QDE model (Qualitative Differential Equation model). This model is is used
for qualitative simulation to produce possible qualitative behaviours of the
modelled system. These qualitative behaviours are automatically converted
into a set of fuzzy rules. These rules model the input output relations in the
system. By estimating the parameters of the membership functions from ex-
perimental data, these fuzzy rules are transformed into a fuzzy system that
can be used for numerical predictions. The fitting of fuzzy rules to learning
data can be viewed as a particular kind of Q2Q transformation. A comparison
with black-box approaches shows the advantages of using a qualitative model
in terms of prediction accuracy. Improvements in terms of qualitative con-
sistency are also evident although the authors do not explicitly address this.
A notable difference between QM-FS modelling and ()? learning introduced
in this paper is that Q? learning does not require a QDE model. Instead, a
qualitative model is automatically induced from data.

There are several approaches to learning qualitative models that may sup-
port alternative approaches to) learning. Most of these approaches learn
qualitative models in the form of QDEs that use qualitative relationships as
add or deriv to describe dependencies among the system variables. In QDEs
the states of the system variables are described as pairs of qualitative values
and directions of change, and qualitative relationships are defined over se-

26

quences of such state descriptions, i.e. qualitative behaviours. Relevant early
work in learning QDE models is described in [7,4,20,9,22]. These systems typ-
ically learn QDEs from qualitative behaviours, but can be extended to enable
learning from numerical data by translating them to qualitative behaviours.
They learn a model for one single operation region of the system and cannot
learn models described by multiple QDEs. MISQ-RT [19] heuristically breaks
the behaviours into segments and can learn multiple QDEs, corresponding to
different operation regions and is in this respect similar to QUIN. QMN [§]
uses a simple search procedure to find QDEs that, within some tolerance, fit
the data. QMN, like QUIN, learns a qualitative model from numerical data
directly, without translation to qualitative behaviours.

GENMODEL [7], the earliest work on learning QDE models, was later ex-
tended in [10] and demonstrated impressive results on real-valued experimen-
tal data. Systems QSI [22] and QOPH [6] use more sophisticated mechanisms
in learning QDE models. Both systems introduce new variables if necessary
and can handle noisy data.

Most of the mentioned systems may support alternative approaches to Q?
learning. For that, a Q2Q method for reifying QDEs would be needed. How-
ever, reifying QDEs seems to require additional mechanisms to those in reify-
ing QUIN’s QCFs. SQUID [13] does a kind of Q2Q transformation from a
different perspective. SQUID uses numerical data to form an envelope around
the functional relationships in the model. It assumes that a semi-quantitative
model of the observed system is given in the form of a semi-quantitative dif-
ferential equation and refines it using numerical data. MSQUID [14] uses a
neural network to fit the numerical data to a monotonic function of one vari-
able and is in this respect simpler than here described Q2Q method. Similar
to our (Q? learning, monotonicity constraints enables MSQUID to make more
accurate predictions.

Acknowledgments

The work reported in this paper was partially supported by the European
Fifth Framework project Clockwork and the Slovenian Ministry of Education,
Science and Sport. We thank A. Eichberger and W. Rulka of Intec, for pro-
viding the wheel suspension model and the Simpack simulation software for
this study, and for acting as domain experts. M.Valasek and P. Steinbauer of
the Czech Technical University also helped in the Intec case study.

27

References

[1] C. Atkeson, A. Moore, S. Schaal, Locally weighted learning, Artificial
Intelligence Review 11 (1997) 11-73.

[2] R. Bellazzi, L. Ironi, R. Guglielmann, M. Stefanelli, Qualitative models
and fuzzy systems: an integrated approach for learning from data, Artificial
Intelligence in Medicine, Artificial Intelligence in Medicine 14 (1998) 5-28.

[3] R. Bellazzi, R. Guglielmann, L. Ironi, A hybrid input-output approach to model
metabolic systems: An application to intracellular thiamine kinetics, Journal of
Biomedical Informatics 24 (2001) 221-248.

[4] I. Bratko, S. Muggleton, A. Varsek, Learning qualitative models of dynamic
systems, in: Proceedings of the 8th International Workshop on Machine
Learning, 1991.

[5] L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and Regression
Trees, Wadsworth, Belmont, California, 1984.

[6] G. Coghill, S.M. Garret, R.D. King, Learning qualitative models in the presence
of noise, in: Proceedings of the QR’02 Workshop on Qualitative Reasoning,
2002, Sitges, Spain.

[7] E. Coiera, Generating qualitative models from example behaviours, Technical
report 8901, University of New South Wales (1989).

[8] S. Dzeroski, L. Todorovski, Discovering dynamics: from inductive logic
programming to machine discovery, J. Intell. Information Syst. 4 (1995) 89—
108.

[9] S. Dzeroski, L. Todorovski, Discovering dynamics, in: Proceedings of the 10th
International Conference on Machine Learning, Morgan Kaufmann, 1993, pp.
97-103.

[10] D. Hau, E. Coiera, Learning qualitative models of dynamic systems, Machine
Learning Journal 26 (1997) 177-211.

[11] K. Forbus, Qualitative process theory, Artificial Intelligence 24 (1984) 85-168.

[12] K. Forbus, Qualitative reasoning, in: A. Tucker (Ed.), CRC Computer Science
and Engineering Handbook, CRC Press, 1997, pp. 715-733.

[13] H. Kay, B. Rinner, B. Kuipers, Semi-quantitative system identification,
Artificial Intelligence 119 (2000) 103-140.

[14] H. Kay, L. H. Ungar, Estimating monotonic functions and their bounds,
American Institute of Chemical Engineering (AIChE) Journal 46 (12) (2000)
2426-2434.

[15] J. de Kleer, J. Brown, A qualitative physics based on confluences, Artificial
Intelligence 24 (1984) 7-83.

28

[16] B. Kuipers, Qualitative Reasoning: Modeling and Simulation with Incomplete
Knowledge, MIT Press, Cambridge, Massachusetts, 1994.

[17] B. Kuipers, Qualitative simulation, Artificial Intelligence 29 (1986) 289-338.

[18] J. Quinlan, Learning with continuous classes, in: Proceedings of the 5th
Australian Joint Conference on Artificial Intelligence, World Scientific,
Singapore, 1992, pp. 343-348.

[19] S. Ramachandran, R. Mooney, B. Kuipers, Learning qualitative models for
systems with multiple operating regions, in: Working Papers of the 8th
International Workshop on Qualitative Reasoning about Physical Systems,
1994, Nara, Japan.

[20] B. Richards, I. Kraan, B. Kuipers, Automatic abduction of qualitative models,
in: Proceedings of the National Conference on Artificial Intelligence, AAAI/MIT
Press, 1992.

[21] J. Rissanen, Modelling by shortest data description, Automatica 14 (1978) 465
471.

[22] A. Say, S. Kuru, Qualitative system identification: deriving structure from
behavior, Artificial Intelligence 83 (1996) 75-141.

[23] Simpack software, Intec, 2002, www.simpack.com.

[24] D. Suc, I. Bratko, Qualitative induction, in: Proceedings of the 15th
International Workshop on Qualitative Reasoning, Stoughton: The Printing
House, 2001, pp. 13-20, San Antonio, Texas.

[25] D. Suc, L. Bratko, Qualitative reverse engineering, in: C. Sammut, A. Hoffmann
(Eds.), Proceedings of the 19th International Conf. on Machine Learning,
Morgan Kaufmann, 2002, pp. 610-617.

[26] D. Suc, I. Bratko, Improving numerical accuracy with qualitative constraints, in:
Proceedings of the 14th European Conference on Machine Learning, Springer,
2003, pp. 385-396, Dubrovnik, Croatia.

[27] D. Suc, Machine reconstruction of human control strategies, Ph.D. thesis,
Faculty of Computer and Information Sc., University of Ljubljana, Slovenia,
2001. Also published by IOS Press, Amsterdam (2003).

[28] D. Suc, Machine Reconstruction of Human Control Strategies, Vol. 99 of
Frontiers in Artificial Intelligence and Applications, IOS Press, Amsterdam,
The Netherlands, 2003.

[29] D. Suc, I. Bratko, Induction of qualitative trees, in: L. De Raedt, P. Flach
(Eds.), Proceedings of the 12th European Conference on Machine Learning,
Springer, 2001, pp. 442-453, Freiburg, Germany.

[30] I. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations, Morgan Kaufmann, San Francisco,
2000, Ch. 8: Machine Learning algorithms in Java, pp. 265-320.

29

[31] M. Wellman, Qualitative simulation with multivariate constraints, in: J. Allen,
R. Fikes, S. E. (Eds.), Proc. 2nd Int. Conf. on Principles of Knowledge
Representation and Reasoning, Morgan Kaufmann, 1991.

30

