
Univerza v Ljubljani

Fakulteta za računalništvo in informatiko

Martin Možina

Argumentirano strojno učenje

DOKTORSKA DISERTACIJA

Ljubljana, 2009

Univerza v Ljubljani

Fakulteta za računalništvo in informatiko

Martin Možina

Argumentirano strojno učenje

DOKTORSKA DISERTACIJA

Mentor: akad. prof. dr. Ivan Bratko

Ljubljana, 2009

University of Ljubljana

Faculty of Computer and Information Science

Martin Možina

Argument Based Machine Learning

DOCTORAL DISSERTATION

Supervisor: Acad. Prof. Dr. Ivan Bratko

Ljubljana, 2009

Povzetek

V pričujočem delu opišemo argumentirano strojno učenje (angl. Argument-Based
Machine Learning, s kratico ABML), ki združuje strojno učenje s tehnikami argu-
mentacije. Argumenti so orodje, s katerim domenski strokovnjaki razlagajo relacije
med atributi in razredom za posamezne učne primere. Primeri razloženi z argu-
menti se imenujejo argumentirani učni primeri. Cilj učenja v ABML je poiskati
tako hipotezo v prostoru vseh možnih hipotez, ki uporabi dane argumente za razlago
razreda argumentiranih učnih primerov. S tem argumenti omejujejo prostor spre-
jemljivih hipotez, kar zmanjša možnost prevelikega prilagajanja podatkom in hkrati
vodijo učni algoritem k hipotezam, ki so razumljivejše.

Ena glavnih razlik med ABML in ostalimi metodami, ki omogočajo uporabo
predznanja, je v načinu izvabljanja znanja s strani domenskih strokovnjakov. Prob-
lem večine obstoječih metod za strojno učenje je, da zahtevajo splošno domensko
znanje. Pridobivanje takega predznanja predstavlja problem, imenovan Feigenbau-
movo ozko grlo, saj domenski strokovnjaki pogosto niso sposobni dobro izraziti nji-
hovega splošnega znanja. Izkaže se, da jim je veliko lažje razlagati znanje s pomočjo
argumentov na konkretnih primerih. V okviru tega smo razvili algoritem za odkri-
vanje kritičnih primerov; to so primeri, ki jih trenutno naučena hipoteza ne zna dobro
napovedovati. V procesu učenja se tako strokovnjakom pokažejo samo ti primeri,
saj bi bilo nemogoče pričakovati, da nam bodo razložili prav vse učne primere. S
tem še vedno dobimo vse relevatno znanje, ostalo znanje pa metoda odkrije iz učnih
podatkov.

Na podlagi osnovih principov argumentiranega učenja smo razvili metodo ABCN2,
razširjeno različico znanega algoritma za učenje pravil CN2. ABCN2 se nauči kar
se da točne množice pravil in pri tem zagotavlja, da bo med pravili, ki pokrijejo ar-
gumentirane učne primere, vsaj eno tako, ki vsebuje med svojimi pogoji razloge iz
argumenta. ABCN2 smo še dodatno razširili z novo metodo EVC (angl. extreme
value correction) za korigiranje ocenjene točnosti pravil glede na število pregledanih
pravil v postopku učenja. Ta popravek se izkaže za pomembnega v argumentiranem
učenju, saj se prostor preiskovanja razlikuje od pravila do pravila glede na dolžino
ustreznih argumentov. Poleg tega se EVC izkaže za koristno orodje tudi pri učenju
navadnih pravil (brez argumentov), saj so napovedne točnosti pravil z uporabo EVC
statistično boljše od pravil brez te korekcije.

Delo zaključimo z eksperimentalno primerjavo ABCN2 in CN2 ter nekaterimi
ostalimi metodami strojnega učenja. ABCN2 se je izkazala za boljšo metodo od

i

CN2 glede na točnost in razumljivost pravil v prav vseh izvedenih poskusih, vendar
zaradi razmeroma majhnega števila poskusov tega nismo mogli statistično dokazati.
Ker je izvajanje primerjave na dovolj velikem vzorcu domen praktično neizvedljivo,
saj pri ABCN2 vedno potrebujemo sodelovanje z domenskim strokovnjakom, kar
je časovno potratno, smo se odločili za analizo vpliva naključnih argumentov na
uspešnost učenja z ABCN2. Izkaže se, da naključni atributi ne poslabšajo točnosti
naučenih modelov in iz tega sklepamo, da argumenti ne morejo poslabšati točnosti
modela, če so le boljši od naključnih.

Ključne besede

• umetna inteligenca, strojno učenje, argumentacija

• učenje pravil, učenje s predznanjem, domensko znanje

• argumentirano strojno učenje, ABML, CN2, ABCN2, korekcija ekstremnih
vrednosti

ii

Abstract

The Thesis presents a novel approach to machine learning, called ABML (argument
based machine learning). This approach combines machine learning from examples
with some concepts from the field of defeasible argumentation, where arguments are
used together with learning examples by learning methods in the induction of a hy-
pothesis. An argument represents a relation between the class value of a particular
learning example and its attributes and can be regarded as a partial explanation of
this example. We require that the theory induced from the examples explains the
examples in terms of the given arguments. Thus arguments constrain the combinato-
rial search among possible hypotheses, and also direct the search towards hypotheses
that are more comprehensible in the light of expert’s background knowledge. Argu-
ments are usually provided by domain experts. One of the main differences between
ABML and other knowledge-intensive learning methods is in the way the knowledge
is elicited from these experts. Other methods require general domain knowledge, that
is knowledge valid for the entire domain. The problem with this is the difficulty that
experts face when they try to articulate their global domain knowledge. On the other
hand, as arguments contain knowledge specific only to certain situations, they need
to provide only local knowledge for the specific examples. Experiments with ABML
and other empirical observations show that experts have significantly less problems
while expressing such local knowledge. Furthermore, we define the ABML loop
that iteratively selects critical learning examples, namely examples that could not be
explained by the current hypothesis, which are then shown to domain experts. Us-
ing this loop, the burden that lies on experts is further reduced (only some examples
need to be explained) and only relevant knowledge is obtained (difficult examples).
We implemented the ABCN2 algorithm, an argument-based extension of the rule
learning algorithm CN2. The basic version of ABCN2 ensures that rules classify-
ing argumented examples will contain the reasons of the given arguments in their
condition part. We furthermore improved the basic algorithm with a new method for
evaluation of rules, called extreme value correction (EVC), that reduces the optimism
of evaluation measures due to the large number of rules tested and evaluated during
the learning process (known as the multiple comparison procedures problem). This
feature is critical for ABCN2, since arguments given to different examples have dif-
ferent number of reasons and therefore differently constrain the space for different
rules. Moreover, as shown in the dissertation, using this method in CN2 (without
arguments) results in significantly more accurate models as compared to the original

iii

CN2. We conclude this work with a set of practical evaluations and comparisons
of ABCN2 to other machine learning algorithms on several data sets. The results
favour ABCN2 in all experiments, however, as each experiment requires a certain
amount of time due to involvement of domain experts, the number of experiments is
not large enough to allow a valid statistical test. Therefore, we explored the capa-
bility of ABCN2 to deal with erroneous arguments, and showed in the dissertation
that using false arguments will not decrease the quality of the induced model. Hence,
ABCN2 can not perform worse than CN2, but it can perform better given the quality
of arguments is high enough.

Keywords

• artificial intelligence, machine learning, argumentation

• rule induction, knowledge-intensive learning, background knowledge, domain
knowledge

• argument based machine learning, ABML, CN2, ABCN2, extreme value cor-
rection

iv

IZJAVA O AVTORSTVU
doktorske disertacije

Spodaj podpisani Martin Možina,
z vpisno številko 63970103,

sem avtor doktorske disertacije z naslovom

Argumentirano strojno učenje
(angl. Argument Based Machine Learning)

S svojim podpisom zagotavljam, da:

• sem doktorsko disertacijo izdelal samostojno pod vodstvom mentorja akad.
prof. dr. Ivana Bratka

• so elektronska oblika doktorske disertacije, naslov (slov., angl.), povzetek (slov.,
angl.) ter ključne besede (slov., angl.) identični s tiskano obliko doktorske dis-
ertacije

• in soglašam z javno objavo elektronske oblike doktorske disertacije v zbirki
“Dela FRI”.

V Ljubljani, dne 30. novembra 2009 Podpis avtorja:

v

Acknowledgements

First and foremost, my gratitude goes to Ivan Bratko, my supervisor, who gave me the
opportunity to work in a relaxing, yet very productive environment. He showed me
how to carry out my research at high standards and how to successfully publish my
work. I was often amazed at his ability to see the big picture, even when I could not,
and at his power to generate new ideas, when I had already hit the wall. I appreciate
the time and effort offered by the members of my reading committee: Blaž Zupan,
Sašo Džeroski, and Floriana Esposito.

I would like to thank to all members of the Artificial Intelligence Laboratory
for providing a great working environment. I particularly appreciate help from Jure
Žabkar, who helped a lot during the development of the ABCN2 algorithm and he
also introduced me to Jerneja Videčnik, who kindly provided data and her expertise
for the infections-in-the-elderly-population domain, one of the earliest experiments
with ABCN2 . I sincerely thank the co-authors Janez Demšar and Blaž Zupan for
helping me to get my first paper published at the ECML’04 conference, which was a
very nice experience for me at that time. I also thank them for their work on Orange, a
library of machine learning methods that tremendously simplified prototyping of new
algorithms. Furthermore, I must thank Saša Sadikov, Matej Guid, and Jana Krivec, all
experts in chess, who are developing the chess tutoring application where many ma-
chine learning problems were identified and best solved by argument-based machine
learning. Following are the rest of the lab members who were always ready to listen
and provide their comments (if they could only understand me): Tadej Janež, Aljaž
Košmerlj, Damjan Kužnar, Blaž Strle, Tomaž Curk, Gregor Leban, Minca Mramor,
Lan Umek, Marko Toplak, Miha Štajdohar, Lan Žagar and Jure Žbontar, and some
past members: Peter Juvan, Daniel Vladušič, Dorian Šuc and Aleks Jakulin.

My research work in the past years was supported by two European projects,
ASPIC and X-Media. I thank John Fox for coordinating ASPIC, the project that
inspired most of the work in this Thesis. Trevor Bench-Capon provided the data for
Welfare Benefit Approval, which was the first successful experiment with ABML. I
also sincerely thank Henry Prakken, Martin Caminada, Sanjay Modgil, Matt South,
and Pancho Tolchinsky for answering so many questions I had about argumentation.
After ASPIC, I joined the X-Media project, lead by Fabio Ciravegna, which was
conceptually a very different project. However, with Claudio Giuliano we were able
to identify a way to combine learning from text with learning from data through the
use of ABML. Some principles of ABML were also used in the Fiat application for

vii

noise reduction in cars. This problem was defined by Marina Giordanino and the Fiat
aerodynamics department.

I should not forget to thank the ladies from the Dean’s office and the Student
office who helped me a lot with all sorts of administrative issues: Dragica Furlan,
Milica Vidič, Maja Kerkez, Mira Škrlj, Lucija Završnik and Jasna Bevk.

This dissertation is dedicated to my parents Janez and Alenka, my brother Miha,
my wife Janja and my two beautiful daughters Tjaša and Katja.

Martin Možina

viii

Contents

1 Introduction 1
1.1 Overview of the dissertation . 4
1.2 Contributions of the dissertation 5

I Fundamental Principles and
Related Work 7

2 Expert Knowledge in
Machine Learning 9
2.1 Machine learning . 9
2.2 Why use domain knowledge? . 11
2.3 An overview of using knowledge in learning 14
2.4 Formal definition of learning with prior knowledge 17

3 Introduction to Argumentation 19
3.1 An argument . 21
3.2 Reasoning with arguments . 22
3.3 Argumentation and machine learning 24

II Argument Based Machine Learning and the ABCN2 Algo-
rithm 25

4 Argument Based Machine Learning 27
4.1 An illustrating example . 28
4.2 Motivation . 29
4.3 Formal definition of argument based machine learning 30
4.4 Comparison of classical and argument-based prior knowledge 35

ix

4.5 Guidelines for building argument based machine learning methods . 36
4.5.1 Argument based inductive logic programming 38
4.5.2 Argument based logistic regression 39

5 Argument Based Rule Learning (ABCN2) 41
5.1 Argumented examples . 42
5.2 Argument based CN2 algorithm 45

5.2.1 ABCN2: covering algorithm 45
5.2.2 ABCN2: search procedure. 47
5.2.3 Time complexity and optimisation 49
5.2.4 Implementation . 51

6 Extensions of ABCN2 53
6.1 Extreme value correction . 53

6.1.1 Related work . 56
6.1.2 The general principle of extreme value correction 57

6.2 Extreme value correction in rule learning 64
6.2.1 EVC algorithm for relative frequencies. 66
6.2.2 Extreme value corrected relative frequency in PN space . . . 69
6.2.3 Experiments . 71
6.2.4 Extreme value correction in argument based rule learning . . 73
6.2.5 When extreme value correction should be used? 73

6.3 Probabilistic covering . 75
6.4 Computing parameters of extreme-value distribution 77

7 Classification from Rules and Combining ABCN2 with Other Methods 79
7.1 Related work . 80
7.2 The PILAR algorithm . 80

7.2.1 Log-linear sum of unordered rules 81
7.2.2 Rules as constraints . 82

7.3 Evaluation . 85
7.3.1 Linear models vs. non-linear models 85
7.3.2 PILAR vs other linear models 88
7.3.3 Improving machine learning methods: logistic regression . . 90
7.3.4 Visualisation of PILAR model with a nomogram 90

7.4 PILAR + any method = any ABML method 93

x

7.5 Discussion . 93

8 ABML Refinement Loop: Selection of Critical Examples 95
8.1 Identifying critical examples . 96

8.2 Are expert’s arguments good or should they be improved? 97

8.3 Similarity and differences with active learning 98

III Experiments and Evaluation 101

9 Introductory experiments 103
9.1 Animal classification . 104

9.2 Welfare benefit approval . 106

9.2.1 The data set . 107

9.2.2 Experiment with ABCN2 109

9.2.3 Discussion . 114

9.3 Infections in elderly population . 115

9.3.1 Data . 115

9.3.2 Arguments . 116

9.3.3 Experiments . 117

9.3.4 Discussion . 118

9.4 South Africa heart-disease domain 119

10 Arguments Implying New Attributes 123
10.1 Japanese credit screening database 123

10.2 ZEUS credit assignment problem 125

10.3 Construction of sophisticated chess concepts 127

10.3.1 Experiment . 128

10.3.2 Discussion . 133

11 Automatically Extracted Arguments from Text 135
11.1 Extracting arguments from text . 135

11.2 Case study: animal classification 137

12 Can Imperfect Arguments be Damaging? 143

xi

13 Concluding Remarks and Further Work 149

A Razširjeni povzetek v slovenskem jeziku (Extended Abstract in Slovene
Language) 153
A.1 Uvod . 155

A.1.1 Prispevki znanosti . 158
A.2 Argumentirano strojno učenje . 160
A.3 Argumentirano učenje pravil . 162

A.3.1 Argumentirani učni primeri 162
A.3.2 ABCN2 algoritem . 163
A.3.3 Ocenjevanje kvalitete pravila v ABCN2 164
A.3.4 Algoritem PILAR: klasifikacija s pravili in popravljanje poljubne

metode strojnega učenja 167
A.4 ABML učni cikel . 167
A.5 Eksperimenti in aplikacije . 168

A.5.1 Klasifikacija živali . 169
A.5.2 Odobritev socialne pomoči 170
A.5.3 Prognostika infekcije med starejšimi občani 171
A.5.4 Prognostika bolezni srca 172
A.5.5 Odobravanje kredita (Japanese Credit Screening Database) . 172
A.5.6 Konstrukcija kompleksnih šahovskih konceptov 173
A.5.7 Avtomatska konstrukcija argumentov iz teksta 174
A.5.8 Vpliv napačnih argumentov na točnost hipoteze 175

A.6 Zaključek . 175

Bibliography 181

xii

Chapter 1

Introduction

Machine learning is concerned with the development of algorithms that enable com-
puter programs to learn and improve from experience [Mit97]. The most common
type of machine learning (ML) is learning from labeled examples, called also super-
vised inductive learning. Each example is described by a set of descriptive attributes
(inputs), and a class variable (output). The task is therefore to formulate a hypothesis
in some formal language that can predict outputs of examples given inputs. This new
hypothesis can be used to predict the outcome of new cases, where the true values
are unknown. Some learning problems tackled with inductive learning are:

• Given examples of weather situations, learn to forecast weather in the future;

• Given examples of past patients, learn to diagnose new patients;

• Given examples of chess positions, determine the relative quality of particular
pieces (e.g. the goodness of a bishop from strategical point of view).

Learning examples represent the past experience; cases where the outcome is al-
ready known. The attributes describing them are usually some natural properties,
which we hope will suffice to make good predictions. For example, a weather situa-
tion can be described by wind direction, temperature, and humidity, where the class
could be the weather situation on the following day. We hope that running a learn-
ing algorithm on such data will provide a hypothesis giving good prediction for new
cases. However, it may also happen that the learning mechanism will fail to find a
hypothesis that would predict well. This can happen either because (1) the set of

1

1. INTRODUCTION

attributes is not comprehensive, (2) the relation between classes and attributes is a
complex function and therefore hard to learn, (3) the language representing the hy-
potheses is inappropriate for the learning problem, (4) or the method overfits on the
given training data.

Whenever learning fails to produce acceptable results, the burden of improving
lies on the domain experts. If the descriptions of examples are not sufficient to explain
the outputs, they need to expand the descriptions by adding additional attributes. If
the language expressivity is insufficient, an alternative formal language needs to be
used. When the target hypothesis is very complex and hard to find, the machine
learning algorithm needs guidance to be able to find this hypothesis. Domain experts
can provide their prior knowledge about the target hypothesis (e.g. parts of the correct
hypothesis) and this knowledge can then be used to guide the learning mechanism
towards those hypotheses that seem more promising to a domain expert. The problem
with this approach is the difficulty that experts face when they try to articulate their
global domain knowledge, known also as the knowledge acquisition problem [Fei84].

In this Thesis, we propose an alternative approach to knowledge elicitation of
background knowledge. Empirical observations have shown that humans are better
at providing specific explanations than providing generic knowledge of the problem.
Therefore, we ask experts to explain the class of a single example with arguments
for and against, where an argument can be seen as a conclusion and a set of reasons
supporting this conclusion. In this sense, a learning example can be seen as a question
to experts. Possible questions in the above domains are:

• Why was it raining on this particular day, while on the day before it was sunny
and warm?

• Why did the infection kill this patient, given that her body temperature was
normal, etc.?

• Why is the black bishop bad in a given chess position?

Although experts might be unable to provide a general theory for any of the men-
tioned learning problems, they do not seem to have any problems to at least provi-
sionally answer these questions. It should be noted that an argument given by an
expert can not be regarded as a logical rule, since the relation given could be valid
only for the chosen learning example rather than for the whole domain.

Argument Based Machine Learning (ABML), described in this Thesis, is an ex-
tension of classical machine learning that allows the use of local expert’s knowledge

2

in the form of arguments. An ABML method learns from learning examples (as
in ML) and from arguments given to some of the learning examples. The resulting
hypothesis must correctly predict the outcomes of examples (as in ML) by using pro-
vided arguments. For example, an argument to a specific day in the weather domain
could be: “It was raining because of the low air pressure on the previous day.” Then,
the resulting hypothesis must mention the reasons of this argument (low air pres-
sure) while explaining the rain on that particular day. In other words, the induced
hypothesis should contain, in some way, the positive relation between low pressure
and raining.

We refer to the learning examples explained with arguments as argumented exam-
ples. Ideally, the complete learning data set would be argumented, however, despite
arguably easier elicitation of knowledge with arguments, the work of experts would
still be extensive if they needed to explain all learning examples. In the disserta-
tion, we will describe a method for selection of critical examples, that is, examples
that can not be correctly classified by the ABML method itself. On the basis of this
method, we will define the ABML refinement loop that iteratively asks experts for
explanation of the most critical example, which significantly reduces the work re-
quired by the experts, while we still obtain all relevant knowledge that could not be
automatically obtained.

With ABML, it is possible to tackle all four above-mentioned problems in ma-
chine learning. To begin with, since experts are not restricted by the given descriptive
attributes, they will often refer to attributes not currently present in the domain, hence
suggesting these attributes should be added. Similarly, they could use specific con-
structs of attributes in their explanations that can not be described in the selected
hypothesis language (e.g. the sum of attributes in propositional rule learning). More-
ovoer, as experts are asked to explain only difficult learning examples and the induced
hypothesis needs to be consistent with the arguments, these resulting hypothesis will
contain also complex relations between output and inputs. And finally, as the ar-
guments constrain the search space among possible hypotheses, the probability of
inducing a hypothesis that overfits training data is reduced.

A final question is, whether we can trust experts’ interpretations of learning ex-
amples, especially since the experts are not always able to perform the prediction by
themselves. Consider, for example, a weather specialist; they will almost always be
able to provide an explanation of past weather situations, however how good is their
prognosis? A striking asset of ABML is that experts do not need to be concerned
whether their knowledge is absolutely correct. They can freely provide their impres-

3

1. INTRODUCTION

sions or merely express an opinion why they think this particular example has the
output as given, and the ABML method should still benefit from such knowledge.
In the Thesis, we shall provide evidence of this claim by demonstrating that even
completely random knowledge does not hurt the accuracy of learned hypothesis.

1.1 Overview of the dissertation

The dissertation is organised in three parts and thirteen chapters.

In Part I, we give an introduction to machine learning and argumentation. First,
we formally define classical machine learning and motivate the use of domain knowl-
edge in learning. Then, we give a brief overview of different approaches in machine
learning that can currently exploit domain knowledge. In Chapter 3, we describe
some basic concepts of argumentation theory. Although these two chapters describe
relevant information, they are not required to understand the rest of the dissertation.
A reader can freely skip these two chapters and proceed to Chapter 4.

Part II contains a definition of ABML and describes the ABCN2 method. In
Chapter 4, we start with a motivating example to illustrate the basic notions of ABML
and continue with a logical formalisation of ABML. We conclude the chapter with
some guidelines for building argument-based methods. The motivating example it-
self is enough for understanding the rest of the Thesis, therefore a reader not inter-
ested in a formal logical definition of ABML can skip most of Chapter 4. We begin
Chapter 5 with a definition of argumented examples accepted by ABCN2. After,
we look at the algorithm ABCN2 itself, describe the concept of AB-covering and
propose some changes of the basic algorithm to improve its time efficiency. The
last section of this chapter gives some details of the actual implemented product.
In Chapter 6 and 7, we introduce extreme value correction for probability estimates
and PILAR classification technique. They are both techniques required for efficient
learning of rules from argumented examples in noisy domains. Moreover, as we will
show, they also improve the quality of rule learning itself (without arguments). The
last chapter of this part describes an ABML loop that iteratively selects critical ex-
amples (examples that the current hypothesis can not explain very well) that would
improve the induced hypothesis the most if explained by the expert.

Part III contains chapters describing experimental evaluation of ABCN2. In
Chapter 9 we begin with some basic experiments with ABCN2 to illustrate its core
idea, where an argument specifies a relation between the current set of attributes and

4

1.2. Contributions of the dissertation

the class value. In the following chapter, we will describe some experiments where
some arguments mention reasons that are not trivially represented by the current set
of attributes. The next chapter (11) will demonstrate how relevant arguments can
be extracted from text sources and how useful is this approach for ABML. In the
last chapter of this part, we will cope with the problem of erroneous arguments and
whether they can hurt the performance of ABCN2.

Chapter 13 concludes the dissertation and summarises the main findings and pro-
vides some pointers for further work.

1.2 Contributions of the dissertation

The main contributions of the dissertation are:

• Definition of the general ABML principle within the Dung’s argumentation
framework and a set of guidelines for extending a machine learning algorithm
into its argument-based version.

• Definition of an argumented example and constraints that arguments present
for the induced hypothesis.

• Development and implementation of ABCN2, a tool for learning classification
rules from argumented examples.

• Development of extreme value correction for probability estimates (EVC) that
can remove optimism in evaluation of rules, which is due to extensive search
for the best rule. We demonstrated that this method is useful for both classical
rule learning and argument-based rule learning.

• A new approach for classification from rules named PILAR. It uses EVC prob-
abilities in classification rather than just class distributions. Moreover, the ap-
proach can combine any method with rule learning, and can therefore be seen
as an argument-based extension of any machine learning algorithm.

• Development of the ABML loop for identification of critical and counter exam-
ples. Explanation of critical examples (with arguments) leads to improvements
of induced hypothesis. Counter examples are used to assure high quality of
provided arguments.

• An algorithm for construction of arguments from free text.

5

1. INTRODUCTION

• Experimental evaluation of ABCN2 on several domains.

All above mentioned methods are implemented within the Orange data mining suite [DZ04],
and are publicly available at www.ailab.si/martin/abml.

The originality and proprietary of mentioned contributions can be proven by a list
of relevant publications. The ABCN2 algorithm, argumented examples, and some
ABML basics were published in [MvB07], and the initial ABML idea was published
in [BM04]. The extreme value correction method was published in [MDvB06],
and the PILAR algorithm in [MB08]. The algorithm for construction of arguments
from text that can be used in ABML was published in [MGB09]. Most of these
publication contained parts of evaluation described in this Thesis, however, there
are also some published works (see [MvBC+06; MGK+08; vMVB06]) that focused
mostly on application of ABML.

6

www.ailab.si/martin/abml

Part I

Fundamental Principles and
Related Work

7

Chapter 2

Expert Knowledge in
Machine Learning

Most of the machine learning algorithms only have very limited capability to ex-
ploit domain expert knowledge (also called prior knowledge or background knowl-
edge) that might be provided along the raw data. They implicitly assume that a ma-
chine learning expert will transform the domain description (e.g. extend the feature
space) according to the given expert knowledge, which should facilitate learning. A
small minority of algorithms, however, can directly exploit given prior knowledge by
constraining the space of hypotheses. Argument Based Machine Learning is also a
paradigm that follows the latter philosophy. In this chapter, we will formalise ma-
chine learning and lay out some convincing arguments why, on their own, machine
learning procedures by itself may not succeed without the use of additional knowl-
edge provided from experts. Moreover, these formalisations will help us later to
understand the difference between the argument-based approach and the classical
machine learning.

2.1 Machine learning

This Thesis is concerned with supervised learning from examples, sometimes re-
ferred to as inductive learning (or inductive generalisation), that learns the function
between inputs and outputs of provided examples. Inductive learning can be also
reckoned as a special type of programming, in which the programmer provides ex-

9

2. EXPERT KNOWLEDGE IN

MACHINE LEARNING

amples of inputs and outputs, and the machine learning algorithm returns a subrou-
tine that computes outputs of examples given inputs. Inductive learning is commonly
used to solve many real world problems, especially in areas where gathering mea-
surements is relatively easy, like engineering or medicine, but where explicit relations
between inputs and outputs are unknown or too complex.

An example in inductive learning is a pair (x, y), where x is a description of the
example (e.g. a set of facts in first-order logic) and y is the class value (or a set
of classes) of the example. It is assumed that y depends on x, i.e. y = f(x), where
function f is unknown. The task of machine learning is thus to find an approximation
of f from a number of given learning examples. In other words, the problem of
learning from examples is usually stated as:

1. Given a set of examples

2. Find a hypothesis (approximation of f) that is consistent with the examples

A hypothesis is consistent with given learning examples, if it agrees with all the
data, namely, correctly predicts class value for all learning examples. Due to noise
or to prevent overfitting, a full consistency is rarely required, but machine learning
algorithms rather try to learn as accurate hypotheses as possible.

We will formally state the above description of learning in logical terms. This
formalisation is a variant of the one described by Russel and Norvig [RN03]. Let the
learning examples and hypothesis be logical sentences:

• De is the conjunction of example e descriptions,

• Ce is the example e’s classification, and

• H is the hypothesis.

Then, the learning algorithm must find such a hypothesis H that satisfies the follow-
ing formula:

∀e,H ∧De ` Ce (2.1)

Our definition contrasts the Russel and Norvig’s in two details. We used the concept
of logical derivation ` instead of logical entailment |=, which will help us later to
define argument based machine learning. We also assumed that each example has
only one classification. The inputs to machine learning algorithm are descriptions
De and classifications Ce for all learning examples, and the algorithm is supposed
to automatically construct such a hypothesis H that would make the above formula

10

2.2. Why use domain knowledge?

true; classification Ce of an example e should be logically derived (explained) from
its descriptions De and the hypothesis H . From now on we shall refer to the formula
2.1 as the derivation constraint.

2.2 Why use domain knowledge?

A fundamental problem of inductive learning is to select a hypothesis that will gener-
alise well, that is, it will be consistent with all examples, even with yet unseen exam-
ples. Let us assume that the space of possible hypotheses is huge and we can expect
several hypotheses to be fully consistent with learning data. The critical question is
thus, which of those hypotheses will generalise well. In the literature of machine
learning [Mit97], we can find three frequently used approaches for selecting the most
promising hypothesis: preferring simpler hypotheses, combining several hypotheses
(ensemble methods), and constraining hypotheses space with domain expert knowl-
edge. In the remainder of this section, we shall explain when and why should we
exercise the third solution.

The first solution addresses the problem of selecting the best hypothesis by bi-
asing learning towards simpler hypotheses, i.e. applying Occam’s razor. Occam’s
razor, a principle attributed to the 14th-century English logician William of Ockham,
is commonly understood by machine learning researchers as [Dom99]:

Given two models with the same training-set error, the simpler one should
be preferred because it is likely to have lower generalisation error.

The training-set error is the error rate of the hypothesis on learning examples,
and the generalisation error is the error on testing (yet unseen) examples. There
are several paradigms in machine learning that directly or indirectly implement this
principle; in Bayesian learning, prior probabilities are often used to penalise complex
hypotheses[Mit97], in minimum description length (MDL) principle [Ris78], simpler
hypotheses usually have shorter description codes, and also in different approaches
to pruning simple hypotheses are always preferred.

Indeed, it was shown that all approaches following the Occam’s razor principle
usually learn more accurate hypotheses, therefore, one could easily incorrectly con-
clude that more complex hypotheses will have a higher generalisation error than the
simpler ones - complex hypotheses are prone to overfitting. However, Jensen and
Cohen [JC00] showed that overfitting does not depend on complexity itself, but on

11

2. EXPERT KNOWLEDGE IN

MACHINE LEARNING

the number of compared hypotheses in the learning procedure, since the probabil-
ity of finding a hypothesis that fits the learning examples by chance increases with
the number of compared hypotheses. It is therefore not the simplicity that makes
Occam’s razor work, but the fact that it effectively reduces the search space, and
consequently reduces overfitting of the method. For example, if we would select a
small number of complex candidate hypotheses in advance (e.g. a few decision trees
with 100 nodes), and one of them would be consistent with learning data, we could
confidently believe that it will generalise well, since it was selected from only a few
hypotheses. An extensive study of Occam’s razor and its problems can be found in
[Dom99].

Although preferring simple hypotheses does often improve the accuracy of learned
hypotheses, it will prevent us to find the best hypothesis in domains where the target
concept is complex. This is one of the reasons for shift of research in machine learn-
ing to more statistical methods, e.g. support vector machines (SVM) [Vap95] and en-
semble methods like boosting [FS97], bagging [Bre96] and random forests [Bre01].
SVM method starts by blowing up the original feature space into high degree poli-
nomials or even monomials, and learns a hypothesis in the new feature space, which
makes the new hypothesis inevitably complex. The overfitting in SVM is prevented
by a technique called regularisation [Tib96], which constraints the values of hypoth-
esis’ parameters, enforcing the classifier to use many “complex” features in classifi-
cation. The ensemble methods follow a similar strategy of that of SVM; they induce
several classifiers (usually decision trees) from data by either varying the training set
or other factors, which are then combined by some voting strategy. Although a sin-
gle classifier in the ensemble can be complex (like new features in SVM), ensemble
methods prevent overfitting by averaging several complex classifiers, where each of
them has only a marginal influence on the final classification. These methods were
shown to consistently achieve better hypotheses than their single hypothesis counter-
parts, because they reduce the following three types of errors occurring in machine
learning [Die02]:

Statistical error occurs when the space of hypotheses is large given data and sev-
eral hypotheses are consistent with data; in such situations averaging over all
consistent hypotheses will reduce the risk of finding one that explains learning
examples only by chance.

Representational error is a result of a inappropriate hypothesis representation space,
which does not contain the best hypothesis; averaging over several hypotheses

12

2.2. Why use domain knowledge?

extends the space of hypotheses and can approximate better than a single hy-
pothesis.

Computational error occurs when an algorithm uses a heuristic to search through
a space of hypotheses and cannot guarantee to find the best hypothesis (stops
in local minima); a weighted sum should reduce risk of finishing in a very bad
local minimum.

Approaches like ensemble learning or SVM have shown to provide best results
in terms of accuracy, but their common weakness is inability to explain their clas-
sifications; to domain experts these methods are like black boxes. In many cases,
learning examples are provided by the domain experts that wish to understand better
the relation between inputs and outputs [Kon93], especially if machine learning is
used as a knowledge acquisition tool [Fei03].

The third alternative is to ask domain experts to provide their prior domain knowl-
edge about the concept, which can be also used to reduce the hypotheses space. In
general, domain knowledge could be any knowledge given about the learning domain
that is not explicitly stated with learning examples. The use of domain knowledge in
machine learning has two expected benefits:

1. induced hypothesis will be more comprehensible to domain experts, and

2. the generalisation error will be lower (accuracy will increase).

With respect to the benefit 1, prior knowledge leads to hypotheses that are con-
sistent with expert’s prior knowledge - hypotheses will explain given examples in
similar terms to those used by the expert. In machine learning, there is a widespread
agreement that hypotheses consistent with prior knowledge are easier for experts
to comprehend. Pazzani [Paz91; PMS97] experimentally showed that people will
much easier understand a new concept, if the concept is consistent with their knowl-
edge. A more elaborate study of understanding new concepts can be found within the
psychology community [Ros95; MA94], particularly in cognitive learning, which is
somehow related to machine learning. They showed that when we learn about new
presented materials, we always start off with our prior knowledge and try to merge
them together. If the new concepts are not consistent with our prior knowledge, the
new knowledge will be likely distorted or even rejected.

The reasons for the better accuracy of hypotheses are two-fold. First, prior knowl-
edge will reduce the search space of candidate hypotheses, thus reduce the number

13

2. EXPERT KNOWLEDGE IN

MACHINE LEARNING

of candidate hypotheses, which will decrease the probability to find a hypothesis that
explains learning examples purely by luck. Note that this is equivalent to decreasing
statistical error as defined above. Secondly, the prior knowledge will constrain meth-
ods to search subspaces that more likely to contain the correct hypothesis, which will
decrease computational error. In literature, we can find some controlled experiments
of utility of prior knowledge. Pazzani [PK92] showed that prior knowledge improves
the accuracy of induced hypotheses, even if the knowledge is not perfect. The results
of the recent challenge “Agnostic Learning vs. Prior Knowledge”∗, where competi-
tors tried to learn hypotheses with and without prior knowledge on the same data,
also supports our claims. There, the hypotheses learned with prior knowledge out-
performed those without prior knowledge on most of the domains. Last but not least,
we will show in the last part of this Thesis that prior knowledge in form of arguments
cannot hinder learning, even if it is wrong, but can significantly improve accuracy,
when it is right.

2.3 An overview of using knowledge in learning

In this section, we will present an overview of machine learning methods that learn
from learning examples and from domain knowledge. The list of references is by
no means exhaustive, since the number of works related to this subject is too large,
but we will try to mention and compare some well-known approaches. We will start
with techniques that are traditionally related to domain knowledge, like EBG and
ILP, and continue with some others less known to have this ability. The whole idea is
to provide the reader with an impression what types of domain knowledge are there
and in what way are currently used in machine learning.

Explanation-based generalisation (EBG) [MKKC86] is probably the technique
that relies the most on the provided prior knowledge. EBG uses prior knowledge to
explain individual learning examples, and the “hypothesis” is then a logical gener-
alisation of these explanations. Note that EBG is not inductive learning; it assumes
perfect and complete knowledge of the domain, which makes it not applicable in
domains where complete knowledge is unavailable.

In other cases, when domain knowledge is only partially provided and cannot
completely explain learning examples by itself, we need to induce a hypothesis us-
ing prior knowledge and learning examples. This problem was largely studied in the

∗url: http://www.agnostic.inf.ethz.ch/

14

http://www.agnostic.inf.ethz.ch/

2.3. An overview of using knowledge in learning

field of inductive logic programming (ILP) [LD94]. All inductive logic programs, for
example HYPER [Bra01] and FOIL [QCJ95a], can accept background knowledge in
the form of logic sentences that facilitate learning by simplifying the representation
of target concepts. Pazzani and Kibler [PK92] developed and evaluated the FOCL
system, an extension of FOIL, that introduces additional types of background knowl-
edge, like constraints on predicates’ arguments and the possibility to include initial
rules. In the GRENDEL system [Coh94], user can constrain the form of learned
hypothesis by specifying the language of rule antecedents with a grammar. A nice
overview of using prior knowledge in ILP is presented in the work by Nedellec et.
al. [NRA+96].

In the research on non-ILP induction methods, we can find a quite common
application of structured prior knowledge in learning structured models, such as
Bayesian networks, when there is not enough data to reliable construct such mod-
els [MKGT06]. Another principle was develpoed by Núnez [Nun91], who extended
the ID3 [Qui86; Mit97] algorithm for induction of decision trees to accept domain
knowledge in the form of ISA hierarchy and the measurement cost associated with
each attribute, which resulted in more logical and understandable decision trees for
the domain experts. Clark [CM93] developed a system for learning qualitative rules
consistent with a qualitative model provided by experts. Similarly, in regression
problems, Šuc et. al. [vVB04; vB03] developed the Q2 approach that learns numeri-
cal models which respect qualitative constraints. The LAGRAMGE [TD97; TD01a;
TD01b] equation discovery system allows a user to define declarative bias of induced
equations (similar to ideas presented in [NRA+96]) with a context-free grammar.
Futhermore, Bohanec and Zupan [BZ04] developed a method for functional decom-
position that can be guided by expert given background knowledge.

Suprisingly, prior knowledge has been also successfully applied to non-symbolic
methods like SVM [FPM+; SSSV98; SD05] and neural networks [TS94]. One pos-
sibility in SVMs is to use prior knowledge to guide the construction of an appropriate
kernel for the problem at hand [FPM+; SSSV98]. Sun and DeJong [SD05], on the
other hand, propose a combination of EBG and SVM, where EBG is used to sug-
gest which of the features should be used in the inner product evaluation (different
examples can have different sets of relevant features). In knowledge-based artificial
neural networks [TS94], prior knowledge is first translated into a neural network,
which is afterwards refined using learning examples. Alternative approaches, like
TANGENTPROP [SVLD92] and EBNN [TM93], use prior knowledge to alter the er-
ror criterion minimised by the optimisation algorithm, so that the network fits well

15

2. EXPERT KNOWLEDGE IN

MACHINE LEARNING

the prior knowledge and the learning examples.

Prior knowledge has found its use also in unsupervised machine learning meth-
ods. Srikant et. al. [SVA97] propose the use of boolean constraints on presence
and absence of specific items in learning association rules, for example, the user
might be interested only in association rules that contain a specific item. Pei and oth-
ers [PHL01] argue that these constraints are too limited, they extended the language
of possible constraints defined in [SVA97] and applied it to frequent itemsets mining.
In clustering, prior knowledge is usually provided at the instance level, where user
can select pairs of instances that should be in the same cluster and pairs that must
not be in the same cluster [WCRS01; LTJ04]. It was shown that clustering becomes
more robust with the use of prior knowledge.

Combining machine learning and expert knowledge provided best results also
in knowledge acquisition tasks [WWZ99]. Most of the applications in the litera-
ture combine machine learning and the experts’ knowledge in one of the following
ways: (a) experts validate induced models after machine learning was applied, (b)
experts provide constraints on induced models, and (c) the system enables iterative
improvements of the model, where experts and machine learning algorithm improve
the model in turns. An example of the latter approach is described in [BS91].

Lately, domain knowledge has been mostly used in complex domains with large
feature spaces. For example, in text mining, Maedche and Staab [MS00] developed
an algorithm to discover non-taxonomic conceptual relations from text, while taxon-
omy of concepts is used as prior knowledge. In his Thesis, Budiu [Bud01] stresses the
importance of domain knowledge for interpretation of meanings of words in sentence
processing. WordNet [Fel98], a lexical database containing semantic relations among
words, can be used to deal with the variability of natural language by constructing
alternative lexical variants, and has proven to be a great addition to text processing,
see for instance [SG05]. Another example of a complex domain is mining patterns
in sequences. Garofalakis and others [GRS02] have increased the speed of search-
ing patterns by constraining types of patterns with regular expressions. Almeida and
Torgo [dAT01] used domain knowledge to extract features from financial time series,
which lead to increase in accuracy in time series prediction.

There are certainly many other methods that use knowledge in machine learning,
but we will stop the overview here. We have reached the point, where we can say
with certainty the common property of these approaches: most of them require the
knowledge from expert to be on the domain level, which differs from our argument-

16

2.4. Formal definition of learning with prior knowledge

based approach, where knowledge is on the level of single examples†. The theoretical
advantages of our approach will be explained in Chapters 3 and 4.

2.4 Formal definition of learning with prior
knowledge

The problem of learning from examples and given prior knowledge, called also
knowledge-based inductive learning[RN03], can be defined as:

1. Given examples and prior knowledge B.

2. Find a hypothesis that is consistent with the examples and prior knowledge B.

With B, the derivation constraint described in formula 2.1 extends to:

∀e, B ∧H ∧De ` Ce (2.2)

In this setting, prior knowledge B and hypothesis H are used together to explain
all classifications of examples from their descriptions. A knowledge-based inductive
learning method should find such hypothesisH that is consistent with this constraint.

We mentioned explanation-based learning as a special kind of learning that “learns”
the complete hypothesis from given complete prior knowledge. The hypothesis,
therefore, logically follows from prior knowledge:

B ` H

Since H is a generalisation of explanations of all learning examples, there is no need
to keep prior knowledgeB in the explanation constraint (although is not wrong). The
full definition of explanation-based learning is thus:

∀e,H ∧De ` Ce (2.3)

B ` H

†We found only two clustering applications [WCRS01; LTJ04] that exploit knowledge based on
pairs of instances, rather on the whole domain.

17

Chapter 3

Introduction to Argumentation

We use argumentation daily. An argument is a tool that enables expression and elu-
cidation of opinions, which we use in conversation with others or while reasoning
internally. Roughly, an argument consists of a claim and a set of reasons defending
the claim. This structure facilitates understanding other’s opinions or enables iden-
tification of fallacies in their reasoning. People usually argue in turns, by providing
arguments and counter-arguments to initial arguments, and the arguer with the last
unchallenged argument is then the winner of the argumentation. Dung [Dun95] sum-
marised argumentation succinctly by an old saying “The one who has the last word
laughs best.”

The study of formal argumentation started among critical thinking and practical
reasoning philosophers [Ric97; Wal06]. Critical thinking is concerned with argument
identification and its evaluation by identifying the weak or missing points in the ar-
gument. Practical reasoning in argumentation is a type of decision making, in which
the arguments are used to determine the best course of action in practical situations,
where the knowledge of the world is not complete. We should also mention that a lot
of inspiration for research in argumentation came from the domain of law [BC91a],
where the argument is the basic tool that lawyers use in trials, and the combination
of all arguments leads to the final decision.

Probably the most important philosophical work for the development of argu-
mentation is the one of Toulmin [Tou58]. He showed that classical logical reasoning
can not capture all aspects of argumentative reasoning, as one is almost never able to
possess complete relevant information about the problem, therefore it is impossible

19

3. INTRODUCTION TO ARGUMENTATION

to be sure about all exceptional cases. His work is most known for his definition of
the structure of an abstract argument: an argument has a conclusion that is inferred
from available data, a warrant that allows you to jump to conclusion, and a possible
rebuttal, which is a new argument by itself that disagrees with the original argument.

These research works provided the basics for the foundation of computational ar-
gumentation theory. Argumentation has now been a part of Artificial Intelligence for
the last twenty years, especially in fields like planning, decision making, dialogue,
natural language processing, and multi-agent systems [RN04]. Argumentation is a
type of reasoning where arguments for and against are constructed and evaluated
to derive a conclusion. This approach enables reasoning with inconsistent infor-
mation, which has made argumentation particularly useful to deal with knowledge
presentation, knowledge elicitation and reasoning within expert systems [CRL00].
Knowledge is represented by a set of rules stored in a knowledge base used by an
argumentation reasoner to construct arguments and reach conclusions. Whenever ad-
ditional knowledge is introduced to the knowledge base, there is no need to change
old knowledge, as the reasoner will be able to infer by itself the arguments that can
be used (accepted arguments) for a particular case and those that can be not (de-
feated arguments). We could say that inconsistency in the knowledge base is not
corrected, but explored in the argumentation process, which should enrich the ex-
planation power of the expert system. Knowledge elicitation, a major bottleneck in
knowledge engineering, is greatly simplified in argumentation-based expert systems,
since:

• it enables the knowledge engineer to focus at one example at a time - domain
experts are asked to explain given example with arguments and these argu-
ments are added to the knowledge base, while an expert or a knowledge engi-
neer does not need to be concerned if the new arguments contradict those in
the knowledge base already.

• the disagreements between domain experts do not pose a problem; all provided
arguments (for and against) can be imported in the knowledge base and it is left
to the reasoner to select which of them are acceptable.

In the remainder of this section, we will try to explain the basic notions in ar-
gumentation theory. There exist several scientific papers formalising argumentation
in different ways, however reviewing them all or even one of them in detail is far
beyond the scope of this Thesis. We will rather explore the basics of argumenta-

20

3.1. An argument

a b...
......................

.

b c...
......................

.

c

d

f

..

...
......................

.

d ¬f...
......................

.

Figure 3.1: Visualisation of inference rules

tion theory relevant for the understanding of the rest of the Thesis: the structure of
an argument, reasoning with a set of arguments, and how were argumentation and
machine learning combined in the past.

3.1 An argument

In common sense, an argument is usually used as a synonym for explanation, proof,
justification, etc. In the context of formal argumentation reasoning, an argument
is simply a formula that provides reasons to believe in a conclusion. There exist
several formalisations of an argument [Pol92; Vre97; SL92], and they all start off
with the same structure: an argument contains conclusion and reasons supporting the
conclusion. We shall describe here a somewhat simplified definition of the argument
proposed by Vreeswijk [Vre97].

Let L be a logical language andR a set of defeasible inference rules. A rule R ∈
R has the form φ1, φ2, . . . , φn → φ, where φ1, φ2, . . . , φn is finite, possibly empty,
sequence in L and φ is a member of L. Note that in defeasible rules conclusions
are not final, there is always a possibility that another rule will contradict this rule.
For instance, let L = {a, b, c, d, e, f} and R the following set of rules (Figure 3.1
visualises these rules):

R = {a→ b; b→ c; c, d→ f ; d→ ¬f}

The sign ¬ stands for negation.
Intuitively, an argument is a result of reasoning with inference rules. It is a (de-

feasible) proof or, in other words, a chain of one or more rules that lead from given
premises (or facts) of the example to the desired conclusion ∗. Figure 3.2 shows two
arguments constructed for f and ¬f , given that we know a and d.

∗We provide only an intuitive explanation of how an argument is constructed from rules. We
appoint an interested reader to [Vre97] for a more formal definition of this process.

21

3. INTRODUCTION TO ARGUMENTATION

a b...
......................

. c...
......................

.

d

f

..

...
......................

.

d ¬f...
......................

.

Figure 3.2: Two arguments for f and ¬f

A single argument is always consistent with itself. But, since the construction of
an argument is a monotonic process - new knowledge cannot rule out an old argu-
ment, two different arguments may interact. There are two main types of interaction
that can be distinguished:

Rebutting: argumentsA andB rebut each other if their conclusions are inconsistent,
e.g. if A concludes f and B concludes ¬f . We say that arguments attack each
other.

Undercutting: an argument A undercuts argument B, if A attacks the connection
between the reasons and the conclusion of theB, e.g. saying there is no warrant
that data provided act as reasons for argument’s conclusion. In this case, the
first argument attacks the second one .

3.2 Reasoning with arguments

Argument-based knowledge bases are usually inconsistent, which results in the con-
struction of conflicting arguments, and the conclusion from these arguments can not
be trivially achieved. The core of any argumentation framework is to evaluate the
acceptability of different arguments. An argument can be either accepted, defeated,
or provisionally accepted. The final conclusion is thus drawn from accepted and
provisionally accepted arguments only.

The basic and most cited definition of an argumentation framework was provided
by Dung [Dun95]:

Definition 3.2.1 (Argumentation framework). An argumentation systemAF is a pair
〈X ,A〉 in which X is a set of arguments and A ⊆ X × X is the attack relation. We
say that an argument x attacks an argument y iff (x, y) ∈ A.

22

3.2. Reasoning with arguments

Figure 3.3: Three conflicting arguments

As mentioned, one of the tasks of argumentation framework is to determine which
of the constructed arguments will be kept for inferring conclusions. We shall describe
a set of semantics proposed by Dung [Dun95] for argument selection.

Definition 3.2.2 (Conflict-free, Attack, Defence). LetR ⊆ X and S ⊆ X .

• A setR is conflict free iff there exist no x, y inR such that x attacks y.

• r ∈ R is attacked by S if there is some s ∈ S such that s attacks r.

• R defends an argument y iff for each argument x ∈ X , if x attacks y, then
there exists r ∈ R such that r attacks x.

Definition 3.2.3 (Acceptability semantics). Let R ⊆ X and R is a conflict free set
of arguments.

• R is admissible if every argument inR is defended byR.

• R is a preferred extension if it is the maximal (w. r. t. set-inclusion) admissible
set.

• R is a complete extension if it is admissible and each argument which is de-
fended byR is inR.

• R is a grounded extension if it is the minimal (w. r. t. set-inclusion) complete
extension.

• R is a stable extension if it is a preferred extension that attacks all arguments
in X \ R.

Let us illustrate these concepts on an example of argumentation framework with
three argumentsA,B, and C, as shown in Figure 3.3. A andB attack each other (e.g.
rebut each other) and C attacks argument B (e.g. C undercuts B). A conflict free set

23

3. INTRODUCTION TO ARGUMENTATION

of arguments is any set, where arguments do not attack each other, e.g. {A,C}. The
set {A,C} defends argument A, since it attacks B, which attacks A. The sets {A},
{C}, and {A,C} are admissible, as they all defend themselves. On the other hand,
the set {B} is not admissible, because it does not defend itself against the attack of
C. Intuitively, admissible sets are sets of arguments that can defend themselves, or in
other words, the set is self-sufficient with respect to defense. Note that the empty set
of arguments ∅ is also admissible. The only preferred extension of this argumentation
framework is therefore {A,C} (the largest admissible set), and likewise, {A,C} is
the only complete, grounded, and stable extension.

3.3 Argumentation and machine learning

The idea of combining ML and argumentation is not completely new. However, there
have only been a few attempts in this direction. Most of them focused on the use
of machine learning to build arguments that can be later used in the argumentation
process, most notably in the law domain [AR03; BA03]. Gomez and Chesñevar sug-
gested in their report [GC04a] several ideas of combining machine learning methods
and argumentation. Moreover, these two authors also developed an approach where
they used argumentation as a method to improve performance of a neural network
[GC04b]. Their method is applied after the actual learning is already finished. Clark
[Cla88] proposed the use of arguments to constrain generalization. However, he used
arguments as a special kind of background knowledge that applied to the whole do-
main, whereas in this Thesis arguments apply to individual examples.

24

Part II

Argument Based Machine Learning
and the ABCN2 Algorithm

25

Chapter 4

Argument Based Machine Learning

In Chapter 2, we showed the difference between various approaches to selecting a
good hypothesis that will perform well on unseen examples. One of the possible
solutions was to constrain search with given prior knowledge - the knowledge about
the learning domain. The critical problem of this approach is the difficulty that ex-
perts face when they try to articulate their global domain knowledge. Argumentation,
which was introduced in the previous chapter, is an approach that allows experts elicit
their knowledge in a more natural way, by allowing the use of their “local” knowl-
edge of specific situations, perhaps only valid for these situations. Therefore, we can
expect that the combination of argumentation and machine learning is the one that
should bring the most benefits.

In this chapter, we will lay out the core idea of Argument Based Machine Learn-
ing (ABML), a combination of machine learning and argumentation. We commence
with an illustrating example that should give a quick and intuitive explanation of what
ABML is. Based on the given example, we enumerate and explain several expected
motivations for learning from arguments. In the third section, ABML is formally
defined, and in fourth some general guidelines for implementing ABML methods are
given. The principles described in this chapter are then used to develop an actual rule
learning algorithm, which is described in the following chapter.

27

4. ARGUMENT BASED MACHINE LEARNING

Table 4.1: Learning examples for credit approval

Name RegularJob Rich AccountStatus HairColor CreditApproved
Mr. Bond no yes Negative Blond yes
Mr. Grey no no Positive Grey no

Miss White yes no Positive Blond yes
Miss Silver yes yes Positive Blond yes
Mrs. Brown yes no Negative Brown no

4.1 An illustrating example

We will present here a simple example of ABML in the framework of attribute-value
learning. Each example will be specified by an attribute-value vector and the class
to which the example belongs. The problem of classic machine learning was already
defined in chapter 2:

• Given examples;

• Find a hypothesis that is consistent with the examples.

Consider a simple learning problem: learning about credit approval. Each ex-
ample is a customer’s credit application together with the manager’s decision about
credit approval. Each customer has a name and four attributes: RegularJob (with pos-
sible values yes and no), Rich (possible values yes and no), AccountStatus (possible
values positive and negative) and HairColor (black, blond, ...). The class is Credi-
tApproved (with possible values yes and no). Let there be five learning examples as
shown in Table 4.1.

A typical rule learning algorithm will induce the following rule from this data:

IF HairColor = blond THEN CreditApproved = yes

ELSE CreditApproved = no

This rule looks good because it is short and it correctly covers all given examples.
On the other hand, the rule may not make much sense to a financial expert. We will
now look at how this may change when arguments are introduced.

In ABML, each learning example can be explained by a set of positive and neg-
ative arguments. A positive argument is used to explain (or argue) why a certain
learning example is in the class as given, while a negative provides reasons why it

28

4.2. Motivation

should not be. Examples that are accompanied with arguments will from now on be
called argumented examples. With arguments, the learning problem changes to:

• Given examples + supporting arguments for some of the examples;

• Find a theory that explains the examples using given arguments.

To illustrate the idea of argumented examples and how an ABML method learns
from them, assume that an expert gave an argument for Miss White: “Miss White
received credit because she has a regular job”. Now consider again the rule above
that all blond people receive credit. This rule correctly classifies Miss White, but it
does not mention the reasons of the argument given, namely that she has a regular
job. Therefore, an argument based rule learning algorithm should induce something
like:

IF RegularJob = yes AND AccountStatus = Positive

THEN CreditApproved = yes

This rule correctly classifies Miss White example using the given argument. As it
will be shown in the following sections, using given arguments in the explanations of
argumented examples is the only constraint for an ABML method. For example, we
are not concerned how Mr. Bond example is explained, since it is not argumented,
however, the explanation of Miss White needs to consider the attached argument.

4.2 Motivation

We shall now repeat ourselves from Chapters 2 and 3 and define a common motiva-
tion from using arguments in learning, which lies in three expected advantages; the
first two are related to learning from data and prior knowledge in general:

1. Reasons (arguments) impose constraints over the space of possible hypotheses,
thus reducing overfitting and guiding algorithms to better hypotheses.

2. An induced theory should make more sense to an expert as it has to be consis-
tent with the given arguments.

The third advantage distinguishes argument based prior knowledge from other types
of prior knowledge:

29

4. ARGUMENT BASED MACHINE LEARNING

3. An argument focuses on a single learning example only, which allows the ex-
perts to elicit their specific example-based knowledge. This reduces the knowl-
edge acquisition bottleneck that experts face when providing “classical” gen-
eral domain knowledge.

Regarding advantage 1, by using arguments, the computational complexity asso-
ciated with search in the hypothesis space can be reduced considerably, and enable
faster and more efficient induction of theories. As thoroughly explained in chapter
2, the reduced number of possible hypotheses decreases chances that the best hy-
pothesis found is not the true best one, but only an artifact of luck. Moreover, if the
learning algorithm heuristically searches the hypotheses space, a reasonable reduc-
tion of space that still contains the best hypothesis will only decrease the probability
that the algorithm stops in a local maxima, instead in the global one.

Regarding advantage 2, there are many possible hypotheses that, from the per-
spective of a machine learning method, explain the given examples sufficiently well.
But some of those hypotheses can be incomprehensible to experts. Using arguments
should lead to hypotheses that explain given examples in similar terms to those used
by the expert, and correspond to the actual justifications.

The third (3) advantage was already greatly explained in the Argumentation Chap-
ter 3. Argumentation has shown to be useful for knowledge elicitation, as it enables
the knowledge engineer to focus at one case at a time. Similarly, in ABML, the ex-
perts need to provide knowledge relating to the specific learning example only, which
could be valid only for this chosen example rather for the whole domain. As we will
show later, the domain expert needs to explain only some of the learning examples.

4.3 Formal definition of argument based machine
learning

In Chapter 2, we formulated the machine learning problem as a constraint satisfaction
problem. The problem was stated as: given descriptions De and classifications Ce of
each learning example e, find a hypothesis H that satisfies the constraint:

∀e,H ∧De ` Ce (4.1)

In ABML, a learning example is annotated by a set of arguments. In the most
general case, e.g. if different domain experts would argue about this example, there

30

4.3. Formal definition of argument based machine learning

will be also conflicts between these arguments. As described in section 3.2, a set of
arguments with corresponding attacks between these arguments represent an argu-
mentation framework.

Definition 4.3.1 (Argumented Example). An argumented example is a learning ex-
ample annotated by an argumentation framework:

• De is a conjunction of example e descriptions,

• Ce is the example e’s classification, and

• AFe is the argumentation framework appended to the learning example e.

An argument in AFe can either support classification Ce (a positive argument) or
it can support the negated value of classification ¬Ce (a negative argument).

Definition 4.3.2 (Positive Argument, Negative Argument). Let R be a conjunction
of reasons.

• A positive argument specifies reasons in favour of classification (using word
because): Ce because R

• A negative argument specifies reasons against the given classification (using
word despite): Ce despite R

A reason can be any basic property specified in the example’s descriptions. For
example, having regular job was used as a reason in the argument for Miss White,
which was the only reason in that case, although a typical argument uses more than
one reason. The positive argument was:

Miss White received credit because she has a regular job.

The conclusion of this argument is “Miss White received credit”, which is the actual
class of this example, and the reason is “she has a regular job”. An example of a
negative argument could be:

“Miss White received credit despite she is not rich”

Using the notation of arguments described in the previous chapter, a positive
argument would be written as R → Ce, meaning that class Ce can be defeasibly
inferred from given reasons. Similarly, the reasons of a negative argument imply the
opposite class; R→ ¬Ce. As the conclusions of positive and negative arguments are
exactly the opposite, positive and negative arguments attack each other.

31

4. ARGUMENT BASED MACHINE LEARNING

Definition 4.3.3 (Attacks between arguments). There are three different types of at-
tack between a positive argument Ap and a negative argument An; they can mutually
attack each other, or only Ap attacks An, or only An attacks Ap. Two positive or
two negative arguments can not be conflicting. Let Ap be Rp → Ce and An be
Rn → ¬Ce.

• Ap attacks An and An does not attack Ap if Rp |= Rn, i.e. negative reasons
can be logically inferred from positive reasons.

• An attacks Ap and Ap does not attack An if Rn |= Rp.

• An and Ap mutually attack each other if Rn = Rp or ¬(Rp |= Rn) ∧ ¬(Rn |=
Rp)

In the first two types of attacks one argument undercuts the other, while in the
third type arguments rebut each other. The set of positive and negative arguments
together with attacks among them present an argumentation framework attached to a
learning example.

As we mentioned within the motivating example, the learning problem using ar-
guments changes to:

• Given examples + supporting arguments for some of the examples

• Find a theory that explains the examples using given arguments

In logical terms, a theory explains an example using given arguments, if the rea-
sons of given arguments are mentioned during the derivation of the example. The
definition of argument-based machine learning therefore needs to use an additional
constraint in the derivation process:

∀e,H ∧De `AFe Ce (4.2)

To help us define the argument-based derivation `AF , we need to introduce a new
functionR over a set of arguments S:

R(S) = {r|∃a ∈ S; r ∈ Reasons(a)} (4.3)

The functionR(S) returns the set of all reasons used in arguments in S.

32

4.3. Formal definition of argument based machine learning

Figure 4.1: An illustration of a proof tree of an argumented example. The proof men-
tions one positive admissible set, and does not mention any of the negative admissible
sets.

Definition 4.3.4 (Argument-based derivation). Let AF be an argumentation frame-
work, let P = {P1, . . . ,Pk} be all nonempty admissible sets of positive arguments
and N = {N1, . . . ,Nl} all nonempty admissible sets of negative arguments in AF .
Then, B is argument-based derived from A with respect to AF , written as A `AF B,
if:

• A ` B, and

• each possible derivation (in a given deduction system) of B given A mentions
at least one positive admissible set Pi, and

• each possible derivation of B given A does not mention any of the negative
admissible sets.

A derivation mentions a set of arguments S if all reasonsR(S) are mentioned within
the derivation process.

Therefore, in the case of ABML, all possible proofs of classifications Ce from
the induced hypothesis H and descriptions De should mention at least one of the
admissible sets of positive arguments and none of the admissible sets with negative
arguments. Remember that an admissible set is a set of not defeated (they can defend

33

4. ARGUMENT BASED MACHINE LEARNING

themselves) and not conflicting (no attacks between arguments) arguments. Figure
4.1 illustrates a proof tree that considers constraints by arguments.

Example 4.3.5. Consider again Miss White from our illustrating example. Her credit
approval was explained by a single positive argument p: “Miss White received credit
because she has a regular job”. Therefore, the only admissible set of arguments
contains p only; P = {{p}}. Since there are no negative arguments, there are no
negative admissible sets. In this case, the argument-constrained derivation of Miss
White classification should mention reason of p, namely “she has a regular job”.

Example 4.3.6. Let us expand the attribute space of our illustrating learning prob-
lem 4.1 with a OwnsHouse feature (whether the person owns a house or not) and
assume that Miss White owns a house. Then, an expert could give the following four
arguments (2 positive and 2 negative) to Miss White:

p1; Miss White received credit because she has a regular job.

p2; Miss White received credit because she owns a house.

n1; Miss White received credit despite she is not rich.

n2; Miss White received credit despite she is blond.

There are three positive admissible sets {{p1}, {p2}, {p1, p2}} and three negative
admissible sets {{n1}, {n2}, {n1, n2}}. Therefore, the proof of Miss White exam-
ple should contain reasons of at least one admissible sets (RegularJob=yes, Own-
sHouse=yes, or both) and should not contain any reasons of negative examples
(Rich=no, HairColor=blond).

Example 4.3.7. Let us further expand the feature space with CreditAmount (amount
of money asked for) and HouseValue (value of applicant’s house on the real-estate
market). Miss White asked for a credit amount of 200 thousand EUR (CreditA-
mount=200), while her house could be sold for 150 thousand EUR (HouseValue =
150). The domain expert could add a new negative argument n3: “Miss White re-
ceived credit despite that credit amount is higher than the value of her house”. The
reasons of this argument imply that she owns a house (ownsHouse=yes), therefore
this argument attacks p2, while p2 does not attack it back (owning a house does not
imply its price). Figure 4.2 visualises attacks between the five arguments. In this

34

4.4. Comparison of classical and argument-based prior knowledge

Figure 4.2: Visualisation of 5 arguments for Miss White. Arrows stand for attacks
between arguments. The argument n3 attacks p2, however p2 does not attack n3, since
reasons of n3 imply reason of p2 (the thick arrow).

argumentation framework argument p2 is defeated, since it is not present in any ad-
missible set. The Miss White example is argument-based derived only if it mentions
the reasons of p1.

Example 4.3.8. Suppose we would additionally know that Miss White possesses an-
other apartment worth 100 thousand EUR. A domain expert could then undercut
argument n3 by saying: “Miss White received credit because the value of all her
property exceeds the credit amount.” Then, the third negative argument n3 would get
defeated, while the p1 itself would be admissible again.

4.4 Comparison of classical and argument-based
prior knowledge

The definitions of ABML and classical learning with prior knowledge can be used to
distinguish both types of domain prior knowledge. Let us repeat both definitions; we
stated the learning from classical prior knowledge as:

∀e, B ∧H ∧De ` Ce (4.4)

and argument based-knowledge as:

∀e,H ∧De `AFe Ce (4.5)

According to this two formulae, the main difference between the approaches is
in knowledge application. The classical prior knowledge B has the same role as

35

4. ARGUMENT BASED MACHINE LEARNING

the induced hypothesis, it is used in the derivation of all learning examples. On the
other hand, argument-based knowledge has to be mentioned within the derivation of
argumented examples only. It is desirable that arguments would be mentioned also
in the explanations of other examples, to use experts knowledge as often as possible,
however this is not required by the method. Naturally, argument-based approach and
classical prior knowledge could be used together:

∀e, B ∧H ∧De `AFe Ce (4.6)

Argument-based approach to machine learning can be easily misunderstood as a
special kind of explanation-based learning. Let us recall the definition of explanation-
based learning:

∀e,H ∧De ` Ce (4.7)

B ` H

Perhaps it is not best visible from the formulae, but approaches do share some simi-
larities. In explanation-based learning, prior knowledge is first used to explain learn-
ing examples. It is assumed that search for these proofs or explanations is time-
consuming, so it might make sense to generalise these “local” proofs and store them
for faster future processing of similar examples. The generalisation in the EBG sense
is simply replacing facts in specific proofs with variables that do not change the va-
lidity of the proof. In ABML, arguments represent a sort of partial “local” proofs,
and an ABML method also generalises these proofs. However, the proofs in ABML
are not complete and the generalisation step requires inductive reasoning, while in
explanation-based learning it does not. Therefore, the main difference between both
approaches is that the hypothesis in explanation-based learning can be logically in-
ferred from prior knowledge - there is no inductive learning whatsoever, while in
ABML the hypothesis can can not be inferred from B.

4.5 Guidelines for building argument based machine
learning methods

The first task in the construction of an ABML method is to select the base method,
which will be later extended to learn from argumented examples. Here we need to
consider that arguments lead to hypotheses that are more comprehensible to domain

36

4.5. Guidelines for building argument based machine learning methods

experts. This can only be demonstrated if the hypothesis language allows human
explanations, e.g. decision trees or logistic regression. We believe that the best
candidates for the base method in ABML are symbolic methods, where hypotheses
are encoded with a set of human readable symbols. However, there is no true obstacle
not to use arguments also in other methods, e.g. instance-based methods like kernel
or k-nearest-neighbour (KNN) methods, but we will not be able to easily spot the
increased understandability in hypotheses achieved with the help of arguments.

After we selected a machine learning method, we need to answer the following
questions:

1. What is the language for representing arguments?

2. What do we mean by “reasons should be mentioned in the derivation of ex-
amples” for the selected learning method? What actually is argument-based
derivation for the selected method?

3. How can we effectively guide learning towards hypotheses consistent with ar-
guments?

4. How is statistical error considered in argumented and non-argumented exam-
ples?

The formal language for reasons in arguments should be the same as the language
defining the hypothesis space. For example, if the hypothesis is a logical program,
then the reasons should be logical sentences. This enables direct reflection of ar-
guments in the induced hypothesis - the reasons of arguments construct part of the
hypothesis. It greatly helps a domain expert to position his or her knowledge and
observe the new, automatically obtained, knowledge in the hypothesis. The second
(2) question is related to the reasoning with induced hypothesis and the third (3) is
related to the search space and how can it be effectively constrained. The fourth
(4) question is not crucial for the method to work (in some methods its solution is
practically impossible), but it can increase the quality of induction. The arguments
differently constrain different parts of the hypotheses space. In some cases, where
arguments are very specific, the induction algorithm will not have much generalisa-
tion to do, and there we can expect low to no overfitting. However, the hypothesis
space related to the non-argumented examples can be less constrained, whereas we
can expect to deal with a higher amount of overfitting.

37

4. ARGUMENT BASED MACHINE LEARNING

In the case of the ABCN2 algorithm, which is going to be described in the fol-
lowing chapters, we shall thoroughly study and provide answers to all four questions.
But first, we will look at two short examples to show ideas for transforming two ma-
chine learning methods, inductive logic programming and logistic regression, to their
argument-based counterparts, which are meant to provide the reader with a more gen-
eral understanding of these questions. The answer to the fourth question is relatively
hard and not necessary for understanding the basic principles, hence it will be omitted
in these two examples.

4.5.1 Argument based inductive logic programming

Inductive Logic Programming (ILP) learns hypotheses from background knowledge
and descriptions of examples provided in first-order logic sentences. Each example is
classified either as positive or negative. The problem is to find such a hypothesis that
(together with background knowledge) proves all positive examples and no negative
ones.

According to our guideline, we will code the reasons of arguments in first-order
logic. As usually, an argument presents a link between example’s descriptions and its
class value. However, in ILP a reason does not need to be explicitly part of descrip-
tion of examples, but can mention a reason that can be inferred from descriptions
and background knowledge. For example, we could have the following rule in back-
ground knowledge (using the syntax of Prolog):

union_member(X) :- % X is a member of a labor union

regular_job(X),

not rich(X).

The argument for Miss White could then change to “Miss White received credit be-
cause she is a member of a labor union.” Another type of arguments in ILP come from
the fact that ILP is particularly suitable for problems where learning examples are re-
lated to each other (e.g. graphs). This means that the reasons of arguments can also
contain relations between examples or even contain the descriptions of some other re-
lated example. To illustrate this specific type of reasons, consider that we could add
married relation to our credit example, where married(person1, person2) means
that person1 and person2 are married. After adding a fact to the domain:

married(mr_Bond, miss_White).

38

4.5. Guidelines for building argument based machine learning methods

the expert is entitled to add the following arguments to the Miss White example:
“Miss White received credit because she is married to Mr. Bond.” or “Miss White
received credit because Mr. Bond is rich.”

Since the usual problem statement of ILP is very similar to our definition of
general machine learning, there should be no problems with the understanding of
argument-based derivation concept. A hypothesis in AB-ILP is consistent with the
given arguments if the proof tree of the learning example contains reasons of the
given arguments. In our Miss White example, we require that fact
married(mr Bond,miss White) or fact rich(mr Bond) is mentioned in the pro-
cedure, respectively for the last two example arguments.

The last question is how to efficiently search through a set of hypotheses consis-
tent with arguments. Using a standard ILP algorithm and simply disregarding incon-
sistent hypotheses would work in theory, however it could be very slow, especially
if an argument would mention facts that are “far” away from the argumented exam-
ple. For a possible improvement, we could consider facts as nodes in graph, while
relations and rules would connect these nodes. Then, an algorithm for finding the
shortest path, e.g. Dijkstra’s algorithm, could be used to connect the facts mentioned
in the reasons of an argument with the facts in the description of the example. These
algorithms are relatively fast. The complete path from reasons to facts of example
would then be used to form the basic structure of the induced hypothesis, while ILP
would only need to induce additional required conditions.

4.5.2 Argument based logistic regression

Logistic regression is a linear method for classification. It is suited for domains with
continuous domain descriptors (attributes) X = {x1, . . . , xn} and a binary class y.
Given class and attributes, logistic regression maximises log-likelihood by optimising
parameters in the formula:

p(y|X) =
1

1 + e−f(X)
(4.8)

f(X) = a0 + a1x1 + a2x2 + . . .+ anxn

This formula is thus used to calculate the probability of class y given description X
of an example.

The usual interpretation of logistic regression formula is in terms of attribute
changes, for example: if the coefficient ai is positive, then the probability of class
y for a particular example would increase if the value of xi of this example would

39

4. ARGUMENT BASED MACHINE LEARNING

increase, while all other attribute values would stay the same. The reasons of an argu-
ment in argument-based logistic regression should thus also be given in a qualitative
sense. Consider an example with the actual values:

(x1 = 0.5, x2 = 0.8, . . . , xi = 6, . . . , xn = −4.3), y = 1

A possible argument for this example could be: “The value of y equals 1 because the
value of xi is high”. This argument can be interpreted then as: the higher is the value
of xi, the larger is the probability P (y = 1).

The argument can be easily converted into a constraint on the induction of lo-
gistic models. In the example above, the argument suggests that the value of the
ai parameter is likely to be positive. One way to assure such constraint is to use
non-symmetric bias in bayesian logistic regression [GLM07] that would prefer either
positive or negative values of a parameter. Alternatively, we could use any form of
strictly constrained logistic regression [VR02], where the values of the parameters
can be limited to be either positive or negative.

Using constraints in logistic regression will force the change of parameters, which
will reflect on the classification of all examples. Such constraints are not according to
the idea of argument based learning; the positiveness of ai parameter is required only
in classification of this particular example and not for the whole learning domain.
However, this approach is still acceptable, as long as this change does not worsen
the prediction on other learning examples. Otherwise, a solution would be a method
that somehow divides the example space and learns a logistic model in each of the
subspaces. An example of a such method is Logistic Model Tree [LHF03].

40

Chapter 5

Argument Based Rule Learning
(ABCN2)

In this chapter, we will describe argument based CN2 (ABCN2 for short), a method
for learning classification rules from argumented examples. ABCN2 is an extension
of the well-known rule learning algorithm of Clark and Niblett ([CB91]). The work
described here bases on our earlier papers on the idea of AB-enhancement of CN2
([MvB06; MvB07].

We will begin with a definition of argumented examples accepted by ABCN2. Af-
ter, we shall look at the algorithm ABCN2 itself, describe the concept of AB-covering
and propose some changes of the basic algorithm to improve its time efficiency. The
last section of this chapter gives some details of the actual implemented product.

There is one critical question though that we need to answer before we move to
the description of the method: Why have we chosen rule learning, and why partic-
ularly CN2, as the basis of our argument-based method? The question is perfectly
valid, as there are various standard ML techniques that could be extended into an
argument-based variant. One of the reasons is the structure of a single argument;
human-based arguments often have a form similar to propositional rules, where the
reason of an argument is a conjunction of premises (see chapter 3). Therefore, follow-
ing our guideline that learned knowledge should be represented the same as existing
knowledge, we believe that rule learning is the most appropriate machine learning
approach to be used with argumentation. CN2 was selected since it is the most com-
monly used and well undestood algorithm for induction of unordered rules, where

41

5. ARGUMENT BASED RULE LEARNING (ABCN2)

by “unordered” we mean that classification from rules considers all applicable rules
for the example and not just the first that triggers. We also extended CN2 in many
aspects (evaluation of rules, covering strategy, classification from rule), which brings
CN2 on a similar level, in terms of accuracy, with other currently popular machine
learning methods.

5.1 Argumented examples

A learning example E in the usual form accepted by CN2 is a pair (A,C), where A
is an attribute-value vector, and C is a class value. An attribute can be either discrete
(finite unordered set of values) or continuous. In addition to such examples, ABCN2
also accepts argumented examples. An argumented example AE is a triple of the
form:

AE = (A, C, Arguments)

As usual, A is an attribute-value vector and C is a class value. Arguments is a set of
arguments Arg1, . . . , Argn, where an argument Argi has one of the following forms:

C because Reasons

or

C despite Reasons

The former specifies a positive argument (speaks for the given class value), while the
latter specifies a negative argument (speaks against the class value). Reasons is a
conjunction of reasons r1, . . . , rn,

Reasons = r1 ∧ r2 ∧ . . . ∧ rn

where each of the reasons ri can be in one of five possible forms. In the explanation
of these forms below we assume that ri is a part of a positive argument; for negative
arguments, the explanations are exactly the opposite. The five forms of reasons are:

• X = xi means that value xi of attribute X is the reason why example is in the
class as given. This is the only allowed form for discrete attributes.

• X > xi (orX >= xi) means that the value of attribute X of example being
greater than (greater or equal to) xi is the reason for class value.

42

5.1. Argumented examples

• X < xi (orX <= xi) the opposite to X > xi (X >= xi).

• X > (orX >=) “X is high”; similar to X > xi (X >= xi), just that we do
not know the threshold value and it has to be found by ABCN2 automatically.
Such an argument says that the value of X of the example is high enough for
the example to be in the class as given.

• X < (orX <=); “X is low”, the opposite of X > (X >=).

We shall now revisit again our key example Miss White from Table 4.1. The pos-
itive argument said: “Miss White received the credit because she has a regular job”,
while one of the negative arguments was: “Miss White received the credit despite
she is not rich”. The Miss White example would in our syntax be written as:

((RegularJob = yes, Rich = no,AccountStatus = positive,HairColor =

blond),
CreditApproved = yes,

{CreditApproved = yes because RegularJob = yes,
CreditApproved = yes despite Rich = no}).

Arguments given to examples additionally constrain rules covering this example.
Remember that in CN2, rules have the form:

IF Complex THEN Class

where Complex is the conjunction of simple conditions, called selectors. Usually,
a selector specifies the value of an attribute, for example HairColor = blond or a
threshold on an attribute value, for example Salary > 5000. A rule for our credit
approval domain can be:

IF rich = no AND HairColor = blond

THEN CreditApproved = yes

The condition part of the rule is satisfied by the attribute values of Miss White
example, so we say that this rule covers this example.

A rule R is consistent with an argument ”C because Reasons” (or ”C despite
Reasons”), if for all reasons ri of Reasons it is true that:

43

5. ARGUMENT BASED RULE LEARNING (ABCN2)

1. If the reason ri is in one of forms: “X = xi” or “X > xi” or “X < xi”
(“X >= xi” or “X <= xi”), then exactly the same selector needs to be present
in the complex of the rule R.

2. If the reason ri has the form “X >” (or “X <”, “X <=”, “X >=”), then
the complex of the rule R needs to contain a selector “X > xi” (or “X <

xi”, “X >= xi”, “X <= xi”). The threshold value xi does not matter for
consistency.

Having the form of arguments defined, we need to implement the concept of
argument-constrained derivation in argument based rule learning. To this end, we
will refine the definition of covering relation. In the standard definition [CN89], a
rule covers an example if the condition part of the rule is true for this example. In
argument based rule learning, this definition is modified to: A rule R AB-covers an
argumented example E if all of the points below hold:

1. All conditions in R are true for E (same as in CN2),

2. R is consistent with at least one positive argument of E, and

3. R is not consistent with any of negative arguments of E.

The AB-covers relation corresponds to the argument-constrained derivation defined
within the general ABML framework. The complete inference from a propositional
rule to an example has only one step: from conditions of the rule to the facts of the
example. If arguments have to be mentioned in the explanation of the example, then
the reasons of arguments need to be a part of the complex. Since arguments in rule
learning can not undercut other arguments (we can assume without loss that under-
cutted arguments are removed prior to learning), each argument itself is admissible,
which allows the use of arguments instead of admissible sets in points 2 and 3.

As an illustration of the differences between AB-covering and the usual definition
of covering, consider again the Miss White example with the argument that she re-
ceived credit because she has a regular job and despite she is not rich. Now consider
four rules:

R1: IF HairColor = blond THEN CreditApproved = yes

R2: IF Rich = no AND HairColor = blond

THEN CreditApproved = yes

44

5.2. Argument based CN2 algorithm

R3: IF Rich = no AND RegularJob = yes

THEN CreditApproved = yes

R4: IF HairColor = blond AND RegularJob = yes

THEN CreditApproved = yes

All four rules cover the Miss White example and have 100% accuracy on the data
set from Table 4.1. However, Rule 1 does not AB-cover the example, because it is
not consistent with the positive argument. For the same reason, rule 2 does not AB-
cover the Miss White example, but this rule fails also because it is consistent with
the negative argument (Rich = no). Rule 3 also fails due to the negative argument,
although it is consistent with the positive argument. The last example AB-covers the
Miss White example.

5.2 Argument based CN2 algorithm

The CN2 algorithm [CN89; CB91] consists of a covering algorithm and a search
procedure that finds individual rules by performing beam search. The covering algo-
rithm induces a list of rules that cover all the examples in the learning set. Roughly,
the covering algorithm starts by finding a rule, then it removes from the set of learn-
ing examples those examples that are covered by this rule, and adds the rule to the
set of rules. This process is repeated until all the examples are removed.

There are two versions of CN2: one induces ordered list of rules, and the other
unordered list of rules. Our algorithm is based on the second version of CN2. In
this case, the covering algorithm consists of two procedures, CN2unordered and
CN2ForOneClass. The first procedure iteratively calls the second for all the classes
in the domain, while the second induces rules only for the class given. When remov-
ing covered examples, only examples of this class are removed [CB91]. Essentially,
CN2ForOneClass is a covering algorithm that covers the examples of the given class.

5.2.1 ABCN2: covering algorithm

Remember that in ABML an induced hypothesis must explain argumented exam-
ples using given arguments. We showed that a single rule explains an argumented
example, if the rule AB-covers the example. A hypothesis induced by CN2 is a set of
rules, and there are several different techniques to classify an example from a set of
if-then rules. They all first select the rules that apply for the classifying example, and

45

5. ARGUMENT BASED RULE LEARNING (ABCN2)

Algorithm 5.1 Pseudo code of the original CN2ForOneClass procedure.
Procedure CN2ForOneClass(Examples ES, Class T)

Let RULE LIST be an empty list.
while ES is not empty do

Let BEST RULE be Find best rule(ES,T)
Add BEST RULE to RULE LIST.
Remove from ES examples covered by BEST RULE.

end while
return RULE LIST

Algorithm 5.2 Covering algorithm of ABCN2 algorithm that learns rules from ex-
amples ES for given class T.

Procedure ABCN2ForOneClass(Examples ES, Class T)

Let RULE LIST be an empty list.
Let AES be the set of examples in class T that have arguments; AES ⊆ ES
Determine threshold in vague arguments (type X >, etc.)
Evaluate arguments (as if they were rules) of examples in AES and sort examples
in AES according to quality of their best argument.
while AES is not empty do

Let AE1 be the first example in AES.
Let BEST RULE be ABFind best rule(ES,AE1,T)
Add BEST RULE to RULE LIST.
Remove from AES examples AB-covered by BEST RULE.

end while
for all RULE in RULE LIST do

Remove from ES examples AB-covered by RULE.
end for
Add rules obtained with CN2ForOneClass(ES,T) to RULE LIST
return RULE LIST

then combine these rules to classify the example. Therefore, to satisfy the ABML
requirement, there needs to be at least one rule in the set of induced rules that AB-
covers this example. This can be achieved relatively simply, by merely replacing the
covering relation in original CN2 with AB-covering.

Replacing the “covers” relation in CN2 with “AB-covers” in ABCN2 ensures
that both argumented and non-argumented examples are AB-covered. However, in
addition to simply AB-covering all the examples, we would also prefer explaining
as many as possible non-argumented examples by arguments given for the argu-

46

5.2. Argument based CN2 algorithm

mented examples. Therefore, we propose a change in the covering algorithm, where
CN2ForOneClass is changed into ABCN2ForOneClass (see Algorithm 5.1 for the
original algorithm and in Algorithm 5.2 the new one). The procedure starts by cre-
ating an empty list of rules, and makes a separate set AES of argumented examples
only. Then it looks for “unfinished” arguments - arguments that have some of the
reasons “vaguely” specified (X > and X <) and finds the best splits for these rea-
sons. Splits are initially set simply to the attribute value of the argumented example;
we then iteratively generalise them to achieve the highest quality. Arguments in the
examples AES are then evaluated by the rule evaluation function∗ as if the arguments
were rules of the form

IF reasons of argument THEN claim of argument

The examples in AES are then sorted according to the “goodness” of their best argu-
ments.

In the while loop, the procedure induces a rule, using ABFind Best rule, to cover
the first argumented example. ABFind Best rule is a modified beam search proce-
dure that accepts examples, an argumented example and a target class, where the
resulting rule is guaranteed to AB-cover the given argumented example. This rule
is added to the rule set, and the procedure removes from AES argumented examples
AB-covered by this rule. The removal of all positive examples is not necessary, as
each of the argumented examples differently constrains the search and thus prevents
ABCN2 from inducing the same rule again. When all argumented examples are cov-
ered, all positive examples AB-covered by rules are removed, and the remaining rules
are learned using classical CN2ForOneClass.

5.2.2 ABCN2: search procedure.

Algorithm 5.3 shows the argument-based search procedure. The procedure takes
a set of examples to learn from, an argumented example that needs to be AB-covered
by the induced rule, and the target class. In Algorithm 5.3 the underlined parts em-
phasize the differences between the original search procedure in CN2 and the AB-
search procedure:

Initial value of set STAR is the set of positive arguments of example E. A rule in-
duced from an argumented example must AB-cover this example, therefore it

∗The original CN2 algorithm uses Laplacian formula of succession for evaluation of rules. We
will propose an alternative evaluation in the Chapter 6.

47

5. ARGUMENT BASED RULE LEARNING (ABCN2)

Algorithm 5.3 Algorithm that finds the best rule that AB-covers the argumented
example E. The “quality” of a complex is evaluated by a user-defined evaluation
function.

Procedure ABFind Best Rule(Examples ES, Example E, Class T)

Let the set STAR contain reasons of positive arguments of E.
Evaluate complexes in STAR (using quality function).
Let BEST CPX be the best complex from STAR.
Let SELECTORS be the set of all possible selectors that are TRUE for E
Let ARG REASONS be the set of all reasons in positive arguments of E (union
of reasons).
while STAR is not empty do
{Specialize all complexes in STAR as follows}
Let NEWSTAR be the set
{x ∧ y ‖x ∈ STAR, y ∈ SELECTORS}

Remove from NEWSTAR all complexes that are consistent
with any of negative arguments of E.
for every complex Ci in NEWSTAR do

if Ci is statistically significant(ES,T) and
quality(Ci) > quality(BEST CPX) then
replace the current value of BEST CPX by Ci

end if
end for
Let STAR be best N complexes from NEWSTAR; N is a user-defined size of
STAR (usually N=5).
Let ABNEWSTAR be such subset of NEWSTAR,

where complexes in ABNEWSTAR contain only
conditions from ARG REASONS.

Let ABSTAR be best N complexes from ABNEWSTAR.
Let STAR be STAR merged with ABSTAR.

end while
return rule: ”IF BEST CPX THEN T.´´

will have to contain the reasons of at least one of positive arguments. The
easiest way to ensure this is to start learning from them.

Specialize with selectors that are satisfied by argumented example. This ensures
the coverage of the seed example by the induced rule.

Remove all complexes that are consistent with negative arguments. Again, rules
must AB-cover argumented example, therefore can not be consistent with any
of the negative arguments.

48

5.2. Argument based CN2 algorithm

Let ABSTAR be best N complexes from ABNEWSTAR. Rules that contain only
conditions that are present in positive arguments are likely to be consistent
with domain knowledge. Thence, these rules are deemed promising, even if
at the moment they are not among first N best rules according to the equality
measure.

5.2.3 Time complexity and optimisation

CN2

The complexity of learning a single rule in original CN2 depends on the data set
properties and learner’s settings ([CN89]). Let:

a be the number of all attributes in the given data set,

e number of examples,

s size of star (as set in CN2), and

L maximum allowed length of a rule.

The evaluation of a single rule has time complexity O(e), since it has to sweep
through all examples to determine which of the examples are covered by the rule and
which are not. In each specialisation step of CN2, we need to evaluate O(s · a) rules,
therefore the complete specialisation takesO(e ·s ·a). Following specialisation, CN2
sorts rules by their quality to select the best N in STAR, which has time complexity
O((s · a)log(s · a)). Finally, as learning a single rule contains L specialisations, the
learning of a complete rule has time complexity O(L · s · a(e+ log(s · a))).

ABCN2

Learning rules from argumented data is on one hand slower, due to additional checks
in AB-cover relation, and faster, as rule learner starts specialising a given argument
and not the empty complex. To estimate the time complexity, we need to define the
following new values:

lp is the average length of positive arguments,

np is the average number of positive arguments given to examples,

ln is the average length of negative arguments, and

49

5. ARGUMENT BASED RULE LEARNING (ABCN2)

nn is the average number of negative argument given to examples.

The time complexity of sorting elements in the beam stays the same O((s ·
a)log(s · a)). The main difference is in the cover relation, viz., to pick out exam-
ples that are covered by a rule. First, a check is needed if the new attribute value
is true for each example, which takes O(e). Then, if the current length of rule is l,
we need O(e · np · lp · l) operations to find out whether the rule is consistent with at
least one positive argument, and similarly, O(e · nn · ln · l) for negative arguments.
Together, evaluation of a single specialisation requires O(e · (l · (np · lp + nn · ln))).
Since learning starts with the positive argument, number of specialisations is reduced
to L− lp, therefore the learning of a complete rule takes:

O

(L− lp) · s · a

e ·
 i=L∑
i=lp

i · (np · lp + nn · ln)

+ log (s · a)

= O

(
(L− lp) · s · a

(
e ·
(
L(L+ 1)− lp(lp + 1)

2
· (nplp + nnln)

)
+ log (s · a)

))
Apparently, the term in the middle (np · lp + nn · ln) is the main factor increasing

time complexity of learning rules from arguments. Any increase in argument’s length
and number of arguments given to examples (positive or negative) will result in an
increase of this factor, and probably also in the increase of overall time complexity.
Only the length of positive arguments has an uncertain polarity of influence, for it
also effects the complexity positively by reducing the number of specialisations to
L− lp.

Speed-ups of ABCN2

The current algorithm ensures that at least one rule will AB-cover each learning ex-
ample. The same would be achieved, though, by enforcing a rule to AB-cover only
the seed example in procedure ABCN2ForOneClass (see Algorithm5.2) and use clas-
sical covering instead. In this way, we do not need to check whether a rule is con-
sistent with positive arguments, as positive arguments are used in root of the rule.
Moreover, consistency with negative arguments has to be checked only for the seed
example and not for others. With the mentioned change, the time complexity of the
algorithm decreases to:

O

(
(L− lp) · s · a

(
e+

L(L+ 1)− lp(lp + 1)

2
· nn · ln + log (s · a)

))
(5.1)

50

5.2. Argument based CN2 algorithm

The complexity of the algorithm is now significantly reduced. To begin with,
the length or number of arguments do not increase time anymore, which favours
therefore to have as many positive arguments as possible. Moreover, the term nn · ln
related to negative arguments is not multiplied by the number of examples e anymore
that also improves the time efficiency a lot. It is also important that this improvement
does not change algorithms 5.2 and 5.3, since it only affects the evaluation of rules,
particularly determination which examples are covered by rule and which not. We
will use this speed-up in all our experiments.

5.2.4 Implementation

The ABCN2 algorithm is implemented within the Orange-toolkit [DZ04]. It is in-
cluded within the standard distribution of Orange http://www.ailab.si/orange/
along with all the necessary documentation.

51

http://www.ailab.si/orange/

Chapter 6

Extensions of ABCN2

The main issue discussed in this chapter is evaluation of rules in ABCN2. We will
show that the multiple-comparison problem described by [JC00] makes evaluation
of rules unavoidably optimistic. The problem is not so acute in standard CN2, since
all rules are similarly optimistic. However, in the case of ABML, particularly in the
case of ABCN2, rules learned from argumented examples are typically selected from
less candidates than rules induced by a standard rule learning algorithm, and thus the
quality of a rule learned from an argumented example is relatively under-estimated
when compared to a rule learned from standard CN2.

We shall describe a new method Extreme Value Correction based on Extreme
Value Distributions that takes multiple-comparisons into account. We will begin with
a description of a general algorithm and continue with a specific algorithm suited es-
pecially for rule learning. We conclude the chapter with a new strategy for rule cov-
ering, which is necessary to enable efficient application of Extreme Value Correction
in ABCN2.

6.1 Extreme value correction

Extreme Value Correction (EVC) is a new method presented in this Thesis that cor-
rects the optimistic evaluations of constructed hypotheses in machine learning algo-
rithms. Most of these algorithms evaluate several hypotheses during learning and
choose the one with the best score. Since these estimates are based on the training
data from which the hypotheses themselves were constructed, they are inevitably op-

53

6. EXTENSIONS OF ABCN2

timistic. a decade ago Jensen and Cohen [JC00] did an extensive study of this pathol-
ogy. They spotted three main characteristics of learning algorithms contributing to
the optimism of evaluations: attribute selection error, overfitting and oversearching.
EVC is a mechanism that aims at solving all three problems.

Overfitting is usually seen as constructing overly complicated and detailed hy-
potheses in order to better fit the data. The problem is traditionally dealt with by
various restrictions on the model language and the search procedure, or by posterior
simplification of the constructed models.

Overconfidence is related to overfitting; discovered hypotheses, mostly compli-
cated, tend to be assigned an exaggerated, overly optimistic probabilities of being
true or another related statistics. The reason lies in the way the machine learning
algorithms operate. In the standard use of statistics, the hypotheses are made in
advance and then tested on independent data sets, which gives unbiased estimates
of their true statistical properties. Machine learning constructs hypotheses from the
data and during the induction process implicitly tests them on this same data, which
makes the estimates unreliable.

As an example, assume that h1, h2, . . . are all possible hypotheses producible
by a certain learning algorithm, and let q1, q2, . . . be their corresponding qualities.
The hypotheses can be, for instance, classification rules, and the qualities can be the
probability of the predicted classes or the χ2 statistics computed on a 2 × 2 table of
the hypothesis’ predictions and the true classes. The task of the learning algorithm
is to (a) compute the qualities of all hypotheses and (b) to select the best hypothesis
hmax, such that ∀i : qmax ≥ qi.

In all practical cases the qualities are estimated on a data sample, therefore q̂i =
qi + εi. It is reasonable to assume that q̂i is an unbiased estimate of qi, so E(εi) over
different possible samples equals zero. The problem occurs at point (b), where the
algorithm picks up a single “optimal” hypothesis, selected not by its true qi but by
qi + εi. In common conditions in machine learning – the data sample is small while
the number of competing hypotheses is huge – the error terms can easily overwhelm
the differences in qualities, so the algorithm chooses the “luckiest” hypothesis instead
of the one with the highest true quality.

Hence, while it is possible to get unbiased estimates of the quality of individual
hypotheses, the machine learning algorithm would most often choose one of those
for which the estimate highly exceeds the true value. In this context, εi measures the
optimism of the assessment.

For illustration, observe the correlation between the true and the estimated class

54

6.1. Extreme value correction

0.4 0.6 0.8 1.0

True rf

0.6

0.8

1.0

Est. rf

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.•••• •• ••• ••• •• •• •• •• •• ••• •• • • •••• • • •• •• • • ••• •• ••• • •••• ••• ••• •• •• • ••• • ••• •• ••• •• • ••• ••• •• • •• •• ••••• •• • •••• • •• • •• • ••• •• •• • • •• •• • • •• •• •• •••• ••• •• •••• • •••••• •• •• •• ••• • • •• ••• •• ••• ••• •• •• • •• ••• ••• •• ••• •• •• • •••• •• •••• •• • ••• • •• •• ••• •• •• • •• • ••• •• • •• •• ••• • •• •• • •• •• •• • •• •• •• • ••• •• •• ••

Figure 6.1: Comparison of the estimated relative frequency of the best rule and its
true relative frequency. Each dot represents one experiment.

probabilities on a set of artificial data sets with controlled class probabilities for each
possible rule. We prepared 300 data sets with ten binary attributes. Five attributes in
each data set were unrelated with the class. For the other five, we prescribed a (ran-
dom, taken from uniform distribution) class probability for each combination of their
values. We then generated 210 examples for each data set, one for each combination
of attribute values, and assigned the classes randomly according to the prescribed
probabilities for the combination of informative attributes. Note that the actual class
proportions in the data set do not necessarily match the defined probabilities for a
particular combination of attribute values.

For each data set the algorithm searched for the rule with the highest estimated
target class probability q̂max and was always able to find one in which it equaled 1.0
(Fig. 6.1). The true probabilities of the target class are however uniformly distributed
between 0.5 and 1.0. The induction algorithm is blind with regard to selecting the
best hypothesis as well as with regard to realistically estimating its probability.

The focus of this section is on the problem of estimation, that is, correcting the
overly optimistic estimate of the hypothesis chosen by the learning algorithm. We
will show how to, in principle, correct the estimates in the border cases with no
optimism and extreme optimism, and the realistic case. To turn the theory into a
useful method for our algorithm ABCN2, we developed an algorithm for correcting

55

6. EXTENSIONS OF ABCN2

optimism in rule learning.

6.1.1 Related work

The problem of overfitting, which is known in statistics for a long time, has become
more important with more research groups working on more data sets for more prob-
lems every day, and even acute with the development of data mining and machine
learning techniques which are designed to fit and, to any extent we allow them to,
overfit the data (see, for instance [Ioa05]).

The common remedy for the problem is to use a separate data set to validate
the findings. The drawback of this procedure is that it reduces the training data set
and is also unsuitable for comparing the competing hypotheses during the induction
process. Besides, a single validation is again prone to random effects, while cross-
validation estimates the successfulness of the learning algorithm and not the quality
of a particular model.

Quinlan and Cameron-Jones [QCJ95b] showed that extensive searching often
produces less accurate results. A similar result was found by comparing complex-
ity of models and their accuracy, as complex models are usually obtained by more
searching. There were several approaches to balancing the complexity and accuracy.
Principles like MDL, regularization, imposing prior as in Bayesian learning all try to
penalize over-complicated models.

In the context of hypothesis testing, Bonferroni adjustment ([Hol79]) can some-
times be used to reduce the computed significance of hypotheses. This is however of
little use in machine learning where millions and billion of hypotheses would make
any finding insignificant. The Bonferroni correction also assumes mutual indepen-
dence of hypotheses, which is highly violated in machine learning and makes the
correction overly conservative. Since some hypotheses are considered only implic-
itly, it is difficult to compute the true number of tested hypotheses. Finally, this
method corrects the probability of finding a hypothesis with such a score if the hy-
pothesis is actually random, which is not what we are usually interested in, that is,
the probability that the hypothesis is not random. Similar criticism also applies to
other significance correction procedures like those by [Hol79] and [Hoc88].

The basic supposition of Jensen and Cohen [JC00] is similar to ours, that is, the
learning algorithms measure q̂i and treat it as if it was an unbiased estimate of the
true qi, which becomes a problem when the hypothesis hi is not a randomly chosen
hypothesis but the one with the highest q̂max, where the optimism term εi might have

56

6.1. Extreme value correction

had a greater role than the quality of the hypothesis itself. As solutions to the problem
they list using the already mentioned Bonferroni correction, new data sample, cross
validation and randomization.

Our approach is based on the extreme value theory ([FT28; Col01]). Similarly
to the central limit theorem which states that the sample averages of random vari-
ables with finite variance are distributed approximately normally, the extremal types
theorem states that all distributions of maximal values of data samples can be approx-
imated by one of three distributions. For instance, for a normally distributed variable
X , the value of Xmax = max(X1, X2, X3, . . . , Xn) is distributed according to Gum-
bel’s distribution ([Col01]). In machine learning, the distributions with such shapes
have already been experimentally found (but not identified as such) by [JC00].

6.1.2 The general principle of extreme value correction

Many machine learning algorithms adopt in some way the following learning scheme ([JC00]):

1. Generate n candidate hypotheses h1, . . . , hn.

2. Evaluate them with evaluation function q on a given data sample S; q̂i =

q(hi, S).

3. Return the best hypothesis hmax according to q and S; q̂max = max(q̂1, . . . , q̂n).

The evaluation q̂i of hypothesis hi is an estimation of the true qi computed on
a sample of examples. In statistical terms, q̂i is instantiation of a random variable
Qi whose value depends on the data sample. We can assume that q̂i is an unbiased
estimate of the true qi, e.g. q̂i = qi + εi where E(εi) = 0.

While this holds for a randomly chosen hypothesis, machine learning algorithms
select the hypothesis with the highest q̂i. The large q̂i can be either due to a high
true quality qi or due to luck, εi. Let hmax be the chosen hypothesis and let q̂max be
its quality. Different samples can generally yield different hypotheses, and q̂max is
another random variable from distribution Qmax defined by maxima over all possible
random samples, e.g. P (x > x0) equals the proportion of samples for which there
exists a hypothesis with qi > x0.

Generally, q̂max is a positively biased estimate of the true quality of hmax. First,
q̂max is unbiased if there is only a single hypotheses being tested (as it is common in
classical statistics) or when there exist a hypothesis hj which is so much better than

57

6. EXTENSIONS OF ABCN2

the others that it wins in (most) samples. In this case q̂max (almost) equals q̂j which
we assumed to be an unbiased estimate of qj .

Now, let there be two hypotheses hj and hk with equal qualities qj = qk, while the
qualities of other hypothesis are much lower, ∀i, i 6= j 6= k : qj − qi � εj − εi. The
learning algorithm would then choose either hj or hk, hence for a particular sample
q̂max = max(q̂j, q̂k) = qj +max(εj, εk). It is obvious (for a formal proof see [JC00])
that E(max(εj, εk)) ≥ E(εj) which in our case means that E(max(εj, εk)) ≥ 0.
Further on, the optimism increases with the number of competing hypotheses, while
increasing the number of inferior hypotheses does not affect the distribution of qmax
and the related optimism.

In this section we describe a general procedure for correcting the optimism of
qmax. We will illustrate it using an artificial data set with 1000 binary attributes and
100 examples in two classes C1 and C2, 50 examples in each. In each experiment we
assign to each attribute Xi the true probability P (Xi = x1|C1) = P (Xi = x2|C2).
Attributes are generated randomly according to this probabilities and independently
from each other. The task is to identify the best attribute according to the χ2 statis-
tics for its relation with the class value, and then estimate its true χ2 on the entire
population.

Bounds for extreme value correction

As shown above, the estimates are not optimistic if there exists a hypothesis hi
which is significantly better than all others. This case requires no correction since
E(q̂max) = E(q̂i) = qi.

Let us illustrate this claim with our simple experiment. We constructed 10 data
sets for each probability maxP between 0.5 and 0.9 with step 0.03. Probability
maxP was set as conditional probability P (Xi = x1|C1) of the first attribute given
class value. The probabilities for the rest 999 attributes are set to 0.5. Figure 6.2
shows a graph comparing estimated averaged χ̂2 of hmax’s and the theoretical χ2 on
a sample of this size. If the conditional probability of the first attribute is close to
0.5, the best evaluation still suffers from high optimism, since alternative hypotheses
are near. However, as the probability increases, the optimism diminishes and the
estimated value χ̂2 becomes a good approximation of the theoretical value.

The largest optimism is manifested in the opposite case, when all hypotheses have
equal quality. In this case optimism equals E(max(ε1, ε1, . . . εN)). A correction as-
suming this scenario would have to impose the highest reduction in best hypothesis’

58

6.1. Extreme value correction

0.0 20.0 40.0 60.0

χ2

0.0

20.0

40.0

60.0

80.0

100.0

χ̂2

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

••••••••
•••
••
•••••••••
••••••
•
•
•••
••
••••
••••••
•
••••
•
•••
••
•
•

•• •
•
•••••••
•
•

•
••••

•

••
•
•

•
•

••

•
••
•
• •
•
•
•

••

••

•

•

•
•

•

•

•

•
•

•

•

•

•
••

•

•

•
•

••

•
•

•
•
•
•

•

••

•

•

•••

•

•

•

•

••
•

.........................
.............................

...........
.....................................

...............
........
........
........
........
........
........
.......................................

........
........
........
........
........
........
............
.............
.............
..............
..............
..............
..............
..............
.............
.............
.............
....

Figure 6.2: Original, uncorrected values of χ2 versus the true values. One attribute
(out of 999) stands out w.r.t. its correlation with class value, others are uncorrelated
with class. Each dot corresponds to the winning hypothesis from one trial. The
line shows the average for each χ2 and the dotted line shows the optimal relation
χ̂2 == χ2.

quality.
Let q̂i be the quality of (supposedly) the best hypothesis hi (that is, qmax for

this sample) found by a machine learning algorithm, and let Qi be the unknown
distribution of q̂i over different samples. Qi depends upon the true qi, which we want
to assess.

The methods starts by measuring the average quality of the best hypothesis in-
duced from data with randomized class values. By randomizing the data we assure
that all hypotheses have the same, known quality q.

1. Permute classes of the training examples to remove correlations between hy-
potheses and the class.

2. Find and evaluate the best hypothesis. Store the evaluation.

3. Compute the average πp of the stored evaluations.

4. Repeat steps 1-3 until the standard error of the average is small enough.

LetQp be the random variable representing the quality of the null hypothesis, that
is, of the hypotheses explored by the learning algorithm on our randomized data. If

59

6. EXTENSIONS OF ABCN2

C1 C2

Xi = x1 35 15
Xi = x1 15 35

(a) Expected contingency for
P (Xi = x1|C1) = 0.7

C1 C2

Xi = x1 44 6
Xi = x1 6 44

(b) Contingency table of the best
scored attribute.

C1 C2

Xi = x1 34.3 15.7
Xi = x1 15.7 34.3

(c) Expected contingency of the best
scored attribute.

Table 6.1: Contingency tables for the pessimistic correction

the hypotheses are evaluated by the χ2 statistics, Qp comes from the corresponding
χ2 distribution.

P (Qp > πp) is then the probability of getting hypotheses better than πp by chance
assuming that the qualities are distributed according to Qp. Similarly, P (Qi > q̂max)

is the probability of getting q̂max by chance assuming that all qualities qi are instan-
tiations of the same random variable Qi (which is the starting assumption for the
pessimistic correction). Since the number of candidate hypotheses is equal in both
cases, we assume that both probabilities are equal:

P (Qp > πp) = P (Qi > q̂max) (6.1)

The distribution Qi is the only unknown in the above equation; we know the shape
of its distribution (e.g. χ2) and we know that it depends on the true qi. The qi thus
has a value which results in such a Qi that P (Qi > q̂max) equals the already known
P (Qp > πp).

We will illustrate the method on a data set like the above, except that all condi-
tional probabilities will equal P (Xi = x1|C1) = P (Xi = x2|C2) = 0.7. We will use
χ2 to measure the quality of hypotheses. The expected 2× 2 contingency table of all
attributes is shown in Table 6.1a.

The best attribute in our generated data set has the contingency table from Table
6.1b. Its q̂max equals

q̂max =
(44− 25)2

25
+

(6− 25)2

25
+

(44− 25)2

25
+

(6− 25)2

25
= 56 (6.2)

Now we estimate the average quality πp on randomized data. After 200 rep-
etitions of randomization, the estimated average for our domain is 11.28. Since

60

6.1. Extreme value correction

0.0 20.0 40.0 60.0

χ2

0.0

20.0

40.0

60.0

80.0

100.0

χ̂2

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

•••
••
•
•
•••
•••
•
••
•••••
•••••••••
••••••
•

••••
••
•

••••••

•
•
•
•••••
••
••••
••
••
•
•

•••
•
•
•
•
•

•
• ••••••••••

••
•
••
••••
•

•
•••••••••

•••••••
•
••

••••
•
••••
• •••
•
••••••

.......

.......

........
.......
........
........
.........
........
........
.........
........
........
.........
........
........
.........
........
........
........
........
..................

..............
.........
.........
.........
..........
.............
.............
.............
............
............
.............
.............
.............
.............
............
...........
...........
...........
......

(a) Uncorrected χ̂2

0.0 20.0 40.0 60.0

χ2

0.0

20.0

40.0

60.0

80.0

100.0

χ̂2

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

•••••••••••••
•
•••••••••••••••••••
•••
•
•

•

••
•••
•
••••
• ••
•

•
••••••
••••
••
••
•
•

••
•
••
•
•
•
•
•
•
•••
••••••
••
•
••
•••••
•
••••••••
•

•
•
••••
•
•
•
•

•
•••
•
•
••
•

• ••
•
•
•
•
••••

...............
..........
.............
..........
..............
..................

.........
.........
.........
.................

...............
.........
.........
.........
............
.............
.............
............
..........
..........
..........
............
...........
...........
...........
...........
.........
.........
.........
.........
.........
.........

(b) Pess. correction of χ̂2

Figure 6.3: Original and corrected estimates of χ2. All hypotheses have the same
true quality.

Qp ∼ χ2(1) , the probability P (Qp > πp) equals 0.00078. Having P (Qp > πp)

and q̂max it only remains to discover the distribution of random variable Qi such that
P (Qi > 56) = 0.00078. Random variable Qi is defined by the true contingency
table of the attribute. The question with our quality measure is thus: what is the
expected contingency table, that the chances of obtaining data as in Table 6.1b are
0.00078? Although the correct values can be in principle computed analytically, it is
more practical to find it using simple bisection making use of the fact that we only
have one degree of freedom, hence we only fit one variable while the others depend
on it.

Table 6.1c shows expected frequencies for which the χ2 gives the correct expected
value:

q̂max =
(44− 34.3)2

34.3
+

(6− 15.7)2

15.7
+

+
(44− 34.3)2

34.3
+

(6− 15.7)2

15.7
= 11.2 (6.3)

Now we use these frequencies to compute the corrected value of q̂max, qmax:

qmax =
(34.3− 25)2

25
+

(15.7− 25)2

25
+

+
(34.3− 25)2

25
+

(15.7− 25)2

25
= 13.8 (6.4)

61

6. EXTENSIONS OF ABCN2

q̂max qmax
EVDp ↘ ↗ Qp

Pa

Figure 6.4: Outline of the proposed procedure for general correction of estimates

We repeated this experiment for different settings of P (Xi = x1|C1) with ten
different random data sets for each. Figure 6.3 shows the original and corrected
estimates. The corrected estimates fit the diagonal line almost perfectly.

Extreme value correction.

Extreme value correction (EVC) is the general method for correction of quality es-
timates. It is similar to the correction of the largest optimism, however without the
assumption that all hypotheses have the same quality. Its idea is depicted in Fig. 6.4.
The learning algorithm finds the best hypothesis hmax with quality q̂max which is an
optimistic estimate of the hmax’s true quality qmax. If the hypotheses were induced
from random data, q̂max would be from a distribution of extreme values which we
shall denote by EVDp. If we knew EVDp, we could compute the significance of
q̂max, that is, the probability Pa that the learning algorithm would find a hypothesis
with q̂max even if all hypotheses were actually random.

On the other side, unbiased estimates of random (or null) hypotheses are dis-
tributed by a known distribution depending on the used quality measure, say χ2.
Knowing the unbiased estimate qmax of the quality of hmax, we would again be able
to compute its significance, which would equal the significance Pa computed by q̂max
and EVDp.

Our procedure will first estimate EVDp, compute Pa, and then find qmax which
gives the same Pa. The computed qmax is the unbiased estimate which we are looking
for. Intuitively, this method transforms the extreme value distribution of the best
hypothesis’ quality in a given learning problem into its single version distribution,
namely the distribution of the quality of the best hypothesis selected without search
assuming we can select it with the same rate of success with respect to the probability
Pa.

Fisher and Tippett [FT28] have shown that extreme values, maxX1, X2, . . . Xn

for X’s coming from any distribution can be approximated by one of three extreme

62

6.1. Extreme value correction

value distributions, which can be generally formulated as

F (x;µ, β, ξ) = exp

{
−
[
1 + ξ

(
x− µ
β

)]−1/ξ}
(6.5)

The three parameters describe the distribution’s location (µ), scale (σ), and shape
(ξ).

Let EVDp be a general EVD for the case where all hypotheses are unrelated to
class. We can fit its parameters with the following randomization procedure.

1. Permute classes of the training examples to remove correlations between hy-
potheses and the class.

2. Find and evaluate best hypothesis. Store best evaluation.

3. Fit parameters of EVDp on all best evaluations computed by now.

4. Repeat steps 1-3 until expected errors of parameters are small enough.

The significance Pa = P (EVDp > q̂max) can be computed from the cumulative
distribution of EVD. The concrete method for calculation of the “unbiased” estimate
qmax which gives the same Pa then depends upon the chosen measure of quality.

The procedure is based on the assumption that all qi for random hypotheses come
from the same distribution. In the next section we will show an example for which
this condition is not fulfilled, but also show a neat technical workaround.

Here, it is crucial to understand the semantics of extreme value correction. The
value qmax corresponds to a value that gives the correct Pa when tested with a stan-
dard statistical test without the use of EVD. However, is it really unbiased? It is
definitely not in all possible cases, since in both boundary cases we also get unbi-
ased estimates, if the assumption on distribution of hypotheses’ quality is satisfied.
Yet, the assumed distributions for bounds are rather extreme, as for this technique we
conjecture that the assumed distribution of true qualities is somewhere in between.
Our experiments suggests that the distribution of the true qualities should be approx-
imately normal, however by now, we were unable to construct a formal proof of our
claim, which still falls under the category of future work.

To experimentally validate the EVC method, we constructed 10 data sets for each
maxP between 0.5 and 0.9 with step 0.03. The probability P (Xi = x1|C1) for each
attribute was randomly drawn from normal distribution N(0.5, (maxP − 0.5)/3.2).
This way 99.9% of attributes have either P (Xi = x1|C1) or P (Xi = x1|C2) between

63

6. EXTENSIONS OF ABCN2

0.0 20.0 40.0 60.0

χ2

0.0

20.0

40.0

60.0

80.0

100.0

χ̂2

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

••
••••
•••
••••
•
•••••

•
•
•
•••••••
••••
••••
••••
•
••
••••
•• ••
•
•
•

•

•••• •
•
•
•
••
•
•

•
•

•
••••••••• •
•
•
•
•
•
•

•
•• ••
•••
•
•
••

• •
•
•

•

•

•
••••

•
•
•
•

•
•

••

•

• •

•

•

•

•
••••
•
•
•
••

•
••
•
•
•

............
...........
..........
...........
.............
....................

..........
........
........
........
.............................

............
............
.............
............
............
...........
.........
.........
.........
.........
.........
............
...........
...........
...........
......................

.....................

(a) Uncorrected χ̂2

0.0 20.0 40.0 60.0

χ2

0.0

20.0

40.0

60.0

80.0

100.0

χ̂2

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

••••••
•••••••••••••
•
•••••••••
••••••
•
•
••••
•
••
•
•
••
•
• ••
••
•

•

•
••• •
•

•
•
••
•
•

•
•

•••••••
••• •
•
•
•

•
••

•
•
• ••
•••

•
•
••

• •
•

•

•

•

•
•
•
••

•

•
•
•

•

•
••

•

• •

•

•
•

••

•
•
•• •
•••

•

•

••

•

•

................
..........
.........
...........
...........
.......................

........
........
........
.......................

..................
............
.............
..........
..........
..........
...........
.........
.........
.........
.........
..........
.........
.........
.........
.........
.........
.............
................

................
....

(b) EVCorrected χ̂2

Figure 6.5: Original and corrected estimates of χ2. True qualities are distributed
normally.

0.5 and maxP . The results of the extreme value correction are shown in Figure 6.5.
Again we observe that the original estimates are optimistic while the adjusted values
match the true values very well.

6.2 Extreme value correction in rule learning

Most rule learning algorithms, as well as CN2, induce models by iteratively searching
for the best rule and removing the examples covered by it [FF05]. Rules are usually
sought by a beam search, which gradually adds conditions to the rule with aim to
decrease the number of covered “negative” examples, while at the same time losing
as few “positive” examples as possible. The search is guided by two measures, one
which evaluates the partial rules and the other which selects between the final rule
candidates; here we will use the common approach where the same measure is used
for both purposes.

A good rule should give accurate class predictions, or, in other words, have a high
probability of the positive class among all examples (not only learning examples)
covered by the rule. Hence a reasonable choice for the measure of rule’s quality is
the relative frequency of the predicted class:

q̂i =
ŝi
n̂i

(6.6)

64

6.2. Extreme value correction in rule learning

where ni is the number of learning examples covered by the rule ri, and si is the
number of positive examples among them.

However, this is an optimistic estimate of the true relative frequency qi, as we have
already shown theoretically as well as experimentally (Fig. 6.1). We will assume that
the estimate of the number of examples that the rule covers is unbiased, n̂i = ni or
E(n̂i) = ni, and correct the problem by finding an unbiased estimate of si, si. This is
possible in correction of relative frequency, as it is enough to correct only one value
to remove optimism (alternative would be to correct value n̂i).

Machine learning algorithms often use them-estimate ([Ces90]) to shift the prob-
abilities toward the prior distributions,

Qi(m) =
si +m× pa
ni +m

(6.7)

where pa is the prior probability and m is a parameter of the method. Fürnkranz
[FF05] showed that the m-estimate presents a trade off between precision (relative
frequency) and linear cost metrics, for instance, weighted relative accuracy [LFZ99;
TFL00]. Different values of the parameter m can be used to approximate many
common evaluation functions. For instance, when m = 0, m-estimate equals the
relative frequency, and when m = 2 and pa = 0.5, it equals the Laplace formula for
probability, which is used in evaluation of unordered rules in CN2 ([CB91]).

To put the m-estimate to a test, we again induced a single rule for each of the
300 data sets from the introduction, this time using the m-estimate with different
values of m (0, 2, 10, 20, 50, 100). With increasing values of m, the method is still
optimistic for rules with lower true probability, but pessimistic for rules with higher
true probability (Fig. 6.6)∗. It seems that m-estimate lowers the estimated quality by
the same amount for all rules, which can not adjust the estimates to lie closer to the
ideal diagonal line representing the perfect correlation.

Although the m-estimate with a suitably tuned m can considerably decrease the
error of the estimated probabilities, this effect seems to come from reducing the op-
timism by pushing the predicted probabilities towards the average, while the cor-
relation between the true and the estimated probability remains rather poor. Thus,
m-estimate and the many other similar techniques are not a satisfactory solution to
the problem of overfitting, inaccurate rule quality estimates and optimistic probabil-
ity predictions.

Non-linear metrics, like χ2 or Foil’s information gain, are an alternative to the
linear metrics [FF05]. However, they do not seem to be solving the problem with

∗We obtained similar results in experiments with other ways of constructing artificial data sets.

65

6. EXTENSIONS OF ABCN2

0.4 0.6 0.8 1.0

0.6

0.8

1.0

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..•••• •• ••• ••• •• •• •• •• •• ••• •• • • •••• • • •• ••• • ••• •• ••• • •••• ••• ••• •• •• • ••• • ••• •• ••• •• • ••• ••• •• • •• •• ••••• •• ••••• • •• • •• •••• •• •• •• ••••• • •• •• •• •••• ••• •• •••• • •••••• •• •• •• ••• •• •• ••• •• ••• ••• •• •• • •• •••••• •• ••• •• ••• •••• •• •••• •• • ••• • •• •• ••• •• •• • ••• ••• •• • •• •• ••• • •• ••••• •• •• • •• •• •• • ••• •• •• ••

(a) Relative frequency
0.4 0.6 0.8 1.0

0.6

0.8

1.0

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..

••••
•• ••• ••• •

• •
•

•
• ••
•

•
•

••
•• • •

•
•
•
• •

• •• •
•• • •••

•
•

••
• • •••• ••• ••

•
•• •• • •

•• •
••

•
•• ••• ••

•
••• ••• ••

• •• •
• ••••• •• • •

•••
• •• • •• •••

• ••
•

• ••
•

•
••• • ••

•
• •
• ••••

•••
•• •

••• • •••••• •• ••
•• •••
•
•

•• ••• ••
••

• •
•

• •• •• •
••
•••••

•
••

•••
•• •

•• ••••
•

•
••••

•
•
• ••• • ••

•• •••
••

•
•

• •
•• •

•
• •

• •
•

•
•

•
••

•
•
•

•
••••• •• ••
• •• •• •
•
• •
•

• ••
•• •

•

(b) m = 2

0.4 0.6 0.8 1.0

0.6

0.8

1.0

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..

•
•••

••
•
••
•

•
•

•• ••
•

•
••

•
•

•
••

•• ••
•

••
•

•

•
••••• •• ••
•

•

•
•

•
•

•
••• •
••
•
••

•
•

•
•

•
•

•• •

••

•

•
• •
•
• •
•

•

••
•
••• ••

••
• •
• ••••
•

••
•

••••
• ••

• •
• •••
• •
• •

•
•
•

•
•
••
•

•
•

•
•

•
••
•

•••
•

••
••

•

• ••
• •
••••

•
•• •

•• •
••• ••

•
• •

••
••

••• ••
• •• ••
•
•
•

••
•

••• • •
••

•

•••

•• ••
••

•

•
•

•
•

•••
•

•
•

• •
•

•

•• •
• •••

•

•
• •

• •
•
•

••• • ••
•

•

••
•

•
••
•
• • •• •• ••
• •

•

••
•

•
• ••• •

•

•
• •

•

(c) m = 10

0.4 0.6 0.8 1.0

0.6

0.8

1.0

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..

•••
•

•
•
•
••
•

•
•
•• ••

•

•
•

•
•
• •
••
•• ••
•

••

•
•

•
•• •• • •• •

•

•

•

•
•

•
•

•
••• •
•
•

•

••

•
•

•
•

•
•

•• •

••

•

•• ••• •
•

•

••
•
••• ••

• •
• •
•

•••
••

•
•

•
••••

• ••
• •

• • ••
• ••

•
• •
•

•
•
••
•

•
•

•

•
•
••
•

•••

•
•

•
••

•

• ••
• •
••••

•
••
•

•••
•

•• ••

•

•
•

•• ••
••

• •
•
• •• ••
•
••

•
•

•
••• ••

•
••

•
••

•• ••••

•

•

•
•
•
•••
•

•
•• •
•

•

•• •
• • •
•

•

•
• •

••
•
• •
•

• • ••
•

•

••

•
•

•• •
• ••• ••

•
• • •
•

•
•

•
•

• ••
•

•

•

•

•
•

•

(d) m = 20

0.4 0.6 0.8 1.0

0.6

0.8

1.0

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..

•••
•

••
•
••
•

•
•
•• ••

•

•
•

•
•
•

•
••

•
• ••

•

••
•

•
•
•• ••• •••

•

•

•

•
•

•
•

•
••• •
••
•

••
•

•

•
•

•
•

•• •

••

•

•• •
•• •
•

•
••

•
•••••
• •

• ••
•
•

•
••

•
•

•
••••

•
••

• •
• • ••• ••
•

• ••

•
•••
•

•
•

•
•

•
••
•

•••
••

•
•

•

•

• •
•

•• •••••
••

•

••
• ••• • •

•

•
•

•• ••
••

• •
•
• •• •• •
• •

•
•

•
••• ••

•
••

•

•
•

•• ••• •

•

•

•

••••••
•

•• •
•

•

•
••• ••

•

•

•
• •

•• •
••

•
•

• ••

•

•
•
•

•
•
•• •• •
•• ••

•• •••
•

• •
•
••••

•
•

•

•
•

•

(e) m = 50

0.4 0.6 0.8 1.0

0.6

0.8

1.0

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..

•••
•

••
•
••
•

•
• •• ••

•

•
•

•
•
•

•
• •

•
• ••

•
••

•
•

•
•• •• • ••••
•

•

•
•
•

•
••

•• •
••
•

••
•

•

••
•

••• •
••

•

•• •
•• •
•

•
••

•
•••••

••
•••

•
•
•

••

•
•

•

••••
•
••
• •

• • •••
•• •

• ••

•

• •••

• •

•

•
• ••

•
•••
• ••
•

•
•

• •
•

•••
•••• ••
•

••
• •••• •

•

•
••• ••

• •
• •
•
• •••• •• •

•
•

•
••• ••

•
••

•

•
•

•• ••••
•

•

•

•••••
•

••• ••

•

•
• •

•
•
•

•

•

•
• •

•• •
•• •

•
• ••

•

•
•
•

•
•
•• •••
•••• ••• ••
•

• •
•

•
••• •

•

•

•
•

•

(f) m = 100

Figure 6.6: Relation between the estimated class probability q̂max (y-axis) and true
(x-axis) class probability qmax for the best rules constructed from artificial data sets.

ŝi si

↓ ↑
L̂RSi LRSi

EVDp ↘ ↗ χ2

Pa(ri)

Figure 6.7: An outline of the proposed procedure

optimistic estimates. For instance, Foil’s information gain is almost linear, therefore
not much improvement can be expected there, while we have already demonstrated
the optimism of χ2 in the previous section. In the following, we will present an
extreme value correction procedure tailored for rules that can be used with any rule
evaluation measure. The work is based on our earlier published work [MDvB06], but
put into a more general context as described in the previous section.

6.2.1 EVC algorithm for relative frequencies.

The outline of the proposed procedure is illustrated in Fig. 6.7. It differs slightly
from the general algorithm described in section 6.1.2, as it does not directly correct

66

6.2. Extreme value correction in rule learning

the evaluation si/ni of a rule, but another well related measure of quality, LRSi.
This is needed since the use of extreme value distributions requires that the values
of random variables come from fixed distributions [Col01]. Likelihood ratio statis-
tics LRSi (definitions follows below) is distributed according to χ2(1) and, since it
disregards the number of covered positive and negative examples, fulfils this criteria,
while si/ni, which comes from β(si, ni − si) and is different for each rule, does not.

Step 1: From ŝi to L̂RSi.

Let s be the number of positive examples covered by some rule and let sc be the
number of positive examples not covered by the rule. Similarly let n be the number
of all covered examples and nc be the number of examples that are not covered by
the rule. LRS for 2× 2 tables derived by [Dun93] as:

LRS = 2

[
s log

s

es
+ (n− s) log n− s

en−s
+ sc log

sc

esc
+ (nc − sc) log n

c − sc
enc−sc

]
(6.8)

where ex is the expected value of x. For instance, es is computed as n s+sc

n+nc
, when

computed on a randomly chosen rule. Note that a similar formula for LRS, without
the last two terms, was used in the original CN2 papers [CN89; CB91] for computing
significance of rules. However, as that formula is approximately correct only if n is
small enough when compared to nc, we prefer to use the formula 6.8. In our case, we
compute the L̂RSi by applying it to the estimates ŝi, ŝci , n̂i, and n̂ci .

Example. We have a data set with 20 examples where the prior probability of the
positive class is 0.5. Learning from that data, the rule search algorithm found a rule
ri with two conditions which covers 10 examples with 8 of them belonging to the
positive class. According to Formula 6.8, its LRS is 7.7.

Step 2: From L̂RSi to Pa(ri).

Since LRS is distributed according to χ2(1), its extreme value distribution can be
approximated in a simpler form called the Fisher-Tippett distribution:

F (x;µ, β) = e−e
−(x−µ)/β

(6.9)

Parameters µ and β depend upon the number of rules covered by the search
(which does not necessarily equal the number of explicitly evaluated rules), which

67

6. EXTENSIONS OF ABCN2

0 1 2 3 4 5 6 7 8 9 10

LRS

0.1

0.2

0.3

..
.....................................
..................................
...................................
...
..

...
.......
.......
.......
.......
.

....

.......
..
....
......
..
....
......
.
....
.....
.
....
.....
.
....
.........
...

(a) Fisher-Tippett extreme value distribution
(µ = 3, β = 2)

0 1 2 3 4 5

χ2

0

0.5

1.0

..
..

(b) χ2 with 1 degree of freedom.

Figure 6.8: The FT-EVD and χ2 probability density functions

1. Let L = 1 (L is the maximum rule length).

2. Permute values of class in the data.

3. Learn a rule on this data (using LRS as evaluation measure), where the maxi-
mum length of rule is L.†

4. Record the LRS of the rule learned.

5. Repeat steps 2-4 to collect a large enough (say 100) sample of LRSs

6. Estimate parameters µ(L) and β(L) of the Fisher-Tippett distribution (see ap-
pendix 6.4 for some tricks on decreasing the errors of µ(L) and β(L)).

7. If µ(L) > µ(L− 1), then L = L+ 1 and return to step 2.

Figure 6.9: The algorithm for computing parameters of the Fisher-Tippett distribu-
tions

in turn depends upon the rule length and the data set and, of course, the search algo-
rithm. Due to their independence of the actual rule, we can compute values µ(L) and
β(L) for different rule lengths before we begin learning, using the algorithm shown
in Fig. 6.9.

During learning we use the cumulative Fisher-Tippett distribution function to es-
timate Pa(ri) for each candidate rule using the pre-computed parameters.

68

6.2. Extreme value correction in rule learning

Example (continued). Say that the algorithm from Fig. 6.9 found µ(2) = 3 and
β(2) = 2 (remember that rule r has two conditions). The curve with such parame-
ters is depicted in Fig. 6.8, so the probability Pa(ri) for the rule from our example
corresponds to the shaded area right of LRS=7.7. Pa(r) equals approximately 0.09.

Step 3: From Pa(ri) to LRSi.

To compute LRSi we need to do the opposite from the last step. Looking at the χ2(1)

distribution (Fig. 6.8), we need to find such a value of LRSi that the area under the
curve to the right of it will equal the computed Pa(ri). In other words, the shaded
areas under the curves in Fig. 6.8 should be the same.

Example (continued). The corresponding LRSi for our examples as read from Fig.
6.8 is 2.9. Note that this is much less than LRS = 7.7, which we computed directly
from the data and which would essentially be used by an unmodified rule induction
algorithm.

Step 4: From LRSi to si.

The remaining task is trivial: compute si from the formula for LRSi using an arbi-
trary root finding algorithm. In our task we are correcting probability estimates based
on relative frequencies, so we shall compute them by dividing the corrected si by n̂i.

Example (conclusion). We used Brent’s method [Atk89] to find that LRSi = 2.9

corresponds to si = 6.95. The rule covers ten examples, so the corresponding class
probability is 6.95/10 = 0.695. Note that this estimate is quite smaller than the
uncorrected 0.8.

6.2.2 Extreme value corrected relative frequency in PN space

PN-space, introduced by Fürnkranz [FF05], is a visualization of rule evaluation met-
rics and their behavior at different coverages and ratios between positive and negative
examples. The isometrics in a such diagram connect different combinations of cov-
ered positive and negative examples that are given the same quality by the selected
measure.

†Note that usingLRS at a given rule length will always order rules the same as wouldLRS. How-
ever, as we will be using si/n̂i in the actual learning phase, in order to correctly estimate parameters
of Fisher-Tippett distribution, measures s/n̂ and LRSi should be well correlated.

69

6. EXTENSIONS OF ABCN2

0.55

0.55

0.6

0.6

0.65

0.65

0.7

0.7

0.75

0.75

0.8

0.8

0.85

0.85

0.9

0.9

10 20 30 40

10

20

30

40

(a) µ = 3, β = 2

0.55

0.550.6

0.6

0.65

0.65

0.7

0.7

0.75

0.75

0.8

0.8

0.85

0.85

0.9

0.9

10 20 30 40

10

20

30

40

(b) µ = 10, β = 2

Figure 6.10: PN-space (ordinate is P , abscissa is N) for EVC with different values
of parameters in the Fisher-Tippett distribution. Labels on isometrics correspond to
corrected relative frequencies. Upper left and lower right parts are symmetric since
they correspond the cases in which one or another class contains the majority of the
examples covered by the rule.

Figure 6.10 shows isometrics for EVC using two different extreme value distribu-
tions. In both cases we have 50 positive and 50 negative examples. In the left diagram
we used Fisher-Tippett with location parameter µ = 3 and in the right diagram µ was
set to 10. Higher location parameter is usually used when the algorithm compares a
larger number of candidate hypotheses, therefore we can look at the latter metric also
as one for rules with more conditions (where search was deeper), while the former
(on the left) as one for rules with fewer conditions.

Both diagrams contain a large central space where the qualities of rules are less
than 0.55. These rules have high probability of being found by chance, hence their
qualities are penalized the most. Due to the higher location parameter of EVD in
the right diagram, its central space is larger. This is correct since the probability
to find an equal ratio of positives and negatives increases by extending the search.
Furthermore, the diagrams also nicely show that rules of different lengths and with
the same covered class distribution get a different evaluation. Therefore, longer rules
are penalized more, as their expected optimism is higher due to a wider search.

70

6.2. Extreme value correction in rule learning

0.4 0.6 0.8 1.0

0.6

0.8

1.0

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...

•

•
•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•
•
•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

••

•

•
•

••

•

•

•

•

•

•

•

•

•

•

•

•

••

•
••

•
•

• •

•

••

•
•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•
•

• •

•

•

•

••

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

••
•
•

•

•

•

•

•

•
•

•

•

• •

•

•

•

•

•

•
•

•

•

•

•

•

•

• •

•
•

•

•

•
•

•

•

•

• •
•

••

•
•

•

••

•

•
•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
• •

•

•
•

•

•

•

•

•

•
•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

• •
•

• •

•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

Average quality: 0.68

Spearman correlation: 0.83

Mean squared error: 0.007

Figure 6.11: Relation between the corrected (y-axis) and the true (x-axis) class prob-
ability.

6.2.3 Experiments

We have tested the algorithm on artificial data described in introduction and on a
selection of data sets from the UCI repository [AN07]. In all experiments we used
CN2 [CB91; CN89] with a beam width set to 5. The algorithm was implemented as
a component for the rule based learner in machine learning system Orange [DZ04].

Artificial data set

The results of using the corrected measure on the artificial data are shown in Fig. 6.11.
The estimated class probabilities are nicely strewn close to the diagonal axis, which
is a clear improvement in comparison with the results from Fig. 6.6.

UCI data sets

There are assumptions behind extreme value correction, which are impossible to ver-
ify on the real data. To test the practical usefulness of our correction, we observed its
behavior on a set of UCI data sets [AN07]. Each data set was split evenly onto learn
and test sets. For learning we then generated ten bootstrap samples from the learn
set.

We ran the algorithm on the bootstrap samples and then used the examples from
the test set to count the number of positive and the number of all examples covered by
each induced rule. We took this ratio to be the true positive class probability for the

71

6. EXTENSIONS OF ABCN2

Data set rel m=2 m=10 m=20 m=50 m=100 EVC
adult 0.43 0.13 0.08 0.06 0.06 0.06 0.04
australian 0.41 0.12 0.05 0.05 0.05 0.08 0.05
balance 0.25 0.12 0.11 0.11 0.08 0.07 0.05
breast (lju) 0.39 0.14 0.09 0.09 0.08 0.06 0.06
breast (wsc) 0.15 0.08 0.13 0.18 0.26 0.30 0.05
car 0.07 0.06 0.05 0.04 0.03 0.02 0.04
credit 0.41 0.11 0.07 0.07 0.06 0.07 0.06
german 0.42 0.13 0.06 0.06 0.05 0.05 0.04
hayes-roth 0.26 0.10 0.16 0.21 0.26 0.29 0.08
hepatitis 0.35 0.12 0.05 0.06 0.09 0.09 0.07
ionosphere 0.27 0.05 0.06 0.09 0.13 0.13 0.03
iris 0.20 0.07 0.09 0.12 0.17 0.22 0.04
lymphography 0.28 0.10 0.17 0.21 0.22 0.24 0.05
monks-1 0.07 0.07 0.16 0.13 0.15 0.20 0.06
monks-2 0.40 0.13 0.10 0.11 0.07 0.08 0.05
monks-3 0.32 0.09 0.08 0.11 0.14 0.13 0.03
mushroom 0.00 0.01 0.08 0.13 0.18 0.25 0.01
pima 0.48 0.15 0.05 0.04 0.04 0.04 0.05
SAHeart 0.46 0.19 0.08 0.07 0.05 0.07 0.07
shuttle 0.26 0.13 0.18 0.14 0.17 0.19 0.11
tic-tac-toe 0.19 0.03 0.07 0.14 0.24 0.30 0.01
titanic 0.01 0.02 0.04 0.04 0.04 0.03 0.02
voting 0.28 0.08 0.10 0.12 0.11 0.10 0.04
wine 0.09 0.07 0.14 0.20 0.24 0.31 0.05
zoo 0.16 0.09 0.22 0.31 0.42 0.47 0.04

Table 6.2: Mean squared errors of estimates by relative frequencies (rel.)m, m-
estimate and our method (EVC)

rule (although it is, as a matter of fact, still only an estimate, it is at least an unbiased
one, since it is computed from the test data).

Results in Table 6.2 show that we succeeded in improving the probability esti-
mates: the probability estimates by our method are far more accurate than those by
any m in the m-estimate measure. The average rank of EVC is 1.6, while ranks of
other estimates range from 3.84 (m=2) to 4.88 (relative frequency). The differences
are highly significant (the Friedman test gives p < 0.001), and the Bonferroni-Dunn
test at α = 0.05 shows that EVC is significantly better than any method we compared
it with.

72

6.2. Extreme value correction in rule learning

This would, however, be easily achieved and surpassed by a method returning a
single rule covering all examples and which would estimate the probability with the
prior class probability. To test that our gains are not due to oversimplification we
also computed the average AUC over the ten bootstrap samples. To make predictions
from lists of rules, we used a simple classifier that takes the first rule that triggers for
each class (we get one rule for each class), and normalize the class probabilities of
these rules to sum up to 1. Although there exist better classifiers from a set of rules,
we believe that using them would not considerably change the ranking of examples
and the related AUC. Table 6.3 shows that the performance of our method in terms
of AUC is comparable to that of the other methods. The differences here are less
significant (the Friedman test gives p = 0.64), and the Bonferroni-Dunn test does not
recognize the EVC as being significantly better than the other methods.

6.2.4 Extreme value correction in argument based rule learning

In the induction of an argument-based rule, the algorithm searches a smaller rule
space when compared to learning standard rules. The larger impact on search reduc-
tion is due to the reasons of positive arguments that comprise the condition part of
the rule. The part of the rule stemming from an argument is not a result of search, but
provided from expert, and therefore is not the culprit for optimism in rules. The EVC
should thus correct only the optimism “produced” by the other part of the condition.
The negative arguments, on the other hand, have only a negligible effect in reducing
the size of the search space and do not need to be considered by EVC.

The only required change to the original EVC algorithm is to learn the param-
eters µ and β for all possible initial size of arguments. The Algorithm is shown in
Figure 6.12. The result is a set of parameters µ and β for each possible length of a
rule and each possible length of the argument in the rule. When a rule in ABCN2 is
evaluated, use the corresponding parameters given rule length L and argument length
A.

6.2.5 When extreme value correction should be used?

The EVC method commits to the following three main assumptions:

• Number of candidate hypotheses should be high enough. Otherwise the maxi-
mum values will not converge to the extreme value distribution, and the related

73

6. EXTENSIONS OF ABCN2

Data set rel m=2 m=10 m=20 m=50 m=100 EVC
adult 0.74 0.76 0.76 0.77 0.77 0.78 0.84
australian 0.85 0.87 0.88 0.88 0.88 0.88 0.91
balance 0.82 0.81 0.81 0.82 0.82 0.81 0.82
breast (lju) 0.60 0.62 0.60 0.58 0.60 0.60 0.62
breast (wsc) 0.97 0.97 0.97 0.97 0.96 0.96 0.98
car 0.84 0.84 0.85 0.86 0.89 0.90 0.90
credit 0.82 0.88 0.88 0.88 0.87 0.88 0.91
german 0.69 0.68 0.69 0.68 0.69 0.69 0.73
hayes-roth 0.88 0.89 0.87 0.86 0.87 0.86 0.90
hepatitis 0.77 0.76 0.76 0.73 0.73 0.71 0.77
ionosphere 0.90 0.91 0.89 0.89 0.89 0.91 0.92
iris 0.97 0.95 0.95 0.95 0.95 0.95 0.95
lymphography 0.78 0.81 0.83 0.85 0.84 0.83 0.81
monks-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
monks-2 0.66 0.67 0.66 0.66 0.64 0.65 0.64
monks-3 0.97 0.98 0.99 0.99 0.99 0.99 0.99
mushroom 1.00 1.00 1.00 1.00 1.00 1.00 1.00
pima 0.68 0.72 0.72 0.72 0.72 0.73 0.76
SAHeart 0.59 0.62 0.63 0.63 0.65 0.65 0.65
shuttle 0.99 0.98 0.98 0.99 0.99 0.99 0.98
tic-tac-toe 0.96 1.00 1.00 1.00 0.99 0.94 1.00
titanic 0.77 0.77 0.77 0.77 0.77 0.77 0.77
voting 0.95 0.95 0.96 0.96 0.97 0.97 0.96
wine 0.97 0.98 0.98 0.98 0.98 0.98 0.94
zoo 1.00 0.99 0.99 0.99 0.99 0.99 0.99

Table 6.3: AUC of classification rules constructed using relative frequencies (rel.)m,
m-estimate and our method (EVC)

probability Pa could not be correctly estimated. Number of hypotheses is pos-
itively related to the number of attributes, independence between attributes,
number of examples, and complexity of hypotheses space.

• Distributions of hypotheses’ qualities should be approximately normal. Espe-
cially problematic are cases with only a few good hypotheses, while others are
much worse. In such a case, EVC will still find the best hypothesis, but EVC
will penalise it more than needed.

• The true evaluation of the best hypothesis is close to 1.0. The problem of ex-
treme situations, where the best evaluation is close to the maximum possible

74

6.3. Probabilistic covering

1. Let L = 1 (L is the maximum rule length).

2. Permute values of class in the data.

3. Learn a rule on this data (using LRS as evaluation measure), where the maxi-
mum length of rule is L.‡

4. Let A = 0 be the size of an argument (number of reasons in an argument).

5. While A < L do:

6. Compute LRSA of the rule learned, where prior distribution is not original
prior distribution, but the class distribution after A conditions.

7. End While

8. Repeat steps 2-7 to collect a large enough (say 100) sample of LRSAs

9. Estimate parameters µ(L,A) and β(L,A) for each A of the Fisher-Tippett dis-
tribution (see appendix 6.4 for some tricks on decreasing the errors of µ(L,A)
and β(L,A)).

10. If µ(L, 0) > µ(L− 1, 0), then L = L+ 1 and return to step 2.

Figure 6.12: The algorithm for computing parameters of the Fisher-Tippett distribu-
tions in argument-based rule learning

value, is that evaluations can not be optimistic. However, as EVC assumes op-
timism, the corrected evaluation of such hypotheses will be, again, pessimistic.

In theory, all three assumptions should be considered before applying EVC, how-
ever in practice, due to the qualitative nature of assumptions, this is virtually im-
possible. We suggest, therefore, a pragmatic approach; to try different evaluation
techniques with cross-validation, select the one with highest score and continue with
the argument-based process.

6.3 Probabilistic covering

The parameters of EVD need to be computed for the whole domain before learning
starts. One of the domain properties that affect these parameters is also the size of the
learning data set. As the classical covering strategy removes all positively covered

75

6. EXTENSIONS OF ABCN2

example ([CB91]), we would need to re-estimate these parameters each time when
a rule is induced and the covered examples are removed. The alternative could be
weighted covering algorithm proposed by [LFTW04], where each example’s weight
in learning is inversely related to the number of rules covering it. However, such
strategy changes the class distribution after each learned rule, which also affects the
parameters of EVD. Unfortunately, estimation of the parameters is time consuming,
and re-estimating parameters each time a rule is learned would make the use of EVC
with the standard CN2 covering procedure or with weighted covering algorithm very
inefficient. To evade the problem we propose a new strategy called probabilistic
covering strategy where the number of learning examples and their class distribution
remains constant during the complete induction process.

Let x.prob be the quality of the best rule covering x. If there are no rules covering
x then x.prob equals the prior probability of the example’s class. When a new rule
R is learned, the removing procedure updates all probabilities of covered examples
as x.prob = maximum(x.prob, q(R)), where q(R) is as usual the estimated class
probability in rule. We say that, when an example x becomes covered by a new
rule, where q(R) > x.prob, then rule R improves the probability of this example; or
shorter: rule R improves example x. We call this probabilistic covering.

Furthermore, we have to enforce certain changes to the procedure of learning a
single rule to prevent learning the same rule all over again, as probabilistic covering
only records how well an example is explained and does not affect the way in which
a rule is learned. We propose the following changes:

Selection of best rule A new rule can be learned only if it improves at least one
example. This must be added as a condition in the algorithm.

Selection of N most promising rules (star) In the original CN2 algorithm best N
rules are selected according to q(R). This heuristic fails in our case, as we seek
for a rule that has high quality and will improve at least one example. Let Z
be a variable with normal distribution approximating the binomial distribution
of a rule R. Its parameters are:

µ = |XR| × r(Q)
σ2 = |XR| × r(Q)(1− r(Q))

The probability 1−P (Z < x.prob) is the probability that a randomly selected
value with given average and variance will be higher than x.prob, which we

76

6.4. Computing parameters of extreme-value distribution

take as a measure of hardness to improve the example x with a specialisation
of rule R. Furthermore, if the probability is interpreted as the probability of
improving example x, then the formula

EI(R) =
∑
xi∈XR

[1.0− P (Z < x.prob)] (6.10)

corresponds to the expected number of improved examples from a rule. This
is the formula used in ABCN2 to select the N most promising rules.

Probabilistic rule covering is evaluated in the next chapter together with the PI-
LAR classification technique.

6.4 Computing parameters of extreme-value
distribution

Section 6.2.1 describes an algorithm for computing extreme distributions of rules
learned from random data which involves calculating the parameters of extreme
value distribution for a vector of maxima of evaluations of rules distributed by χ2

with 1 degree of freedom. The limiting distribution of all χ2 distributions is Fisher-
Tippet ([FT28; Gum54; GL54]).

The cumulative distribution function of Fisher-Tippet distribution is

P (x < x0) = e−e
µ−x0
β (6.11)

where µ and β are parameters of the distribution. Distribution’s mean, median, and
variance are

mean = µ+ βγ, median = µ− β ∗ ln ln 2, var = π2β2/6 (6.12)

where γ is Euler-Mascheroni constant 0.57721. The natural way to compute the
parameters µ and β from the sample would be to first estimate the variance from
the data and use it to compute β, followed by the estimation of µ from the sample’s
mean or median. However, the error of estimation of variance and mean propagates
to estimations of parameters µ and β, where variance is a bigger problem than mean,
as it is used for estimation of both parameters.

Gupta [Gup60] showed that for p independent and identically distributed values
taken from χ2 with one degree of freedom, where p is large, the following properties

77

6. EXTENSIONS OF ABCN2

hold for their maxima M :

E(M) = 2 ln p− ln ln p− ln π + 2γ (6.13)

m(M) = 2 ln p− ln ln p− ln π − 2 ln ln 2 (6.14)

σ(M) =
√

2/3π2 (6.15)

Since σ(M) is independent of the number of values p (although it has to be large),
combining 6.12 and 6.15 gives β = 2. On the other hand, when p is not large, β
will be less than 2, as the variance of χ2 is less than the variance of its correspond-
ing extreme value distribution. Particularly, in the extreme case with p = 1, the
Fisher-Tippet would try to approximate the χ2 distribution, where β would be 1.1.
Therefore, to compute β, we need to first estimate the variance of extreme values,
compute β, and trim it to values between 1.1 an 2.

Afterwards β was estimated, we can proceed to estimation of the remaining pa-
rameter µ. In our algorithm we computed the median from the vector of maximum
values, so µ equals the median plus β ln ln 2.

78

Chapter 7

Classification from Rules and
Combining ABCN2 with Other
Methods

The main advantage of rule learning methods is in their power to spot and explain
local regularities. Each rule concisely explains the correlation between the class and
a set of attributes on the subspace covered by the rule. Their locality, however, raises
problems when used in classification, as in some cases clashes occur and sometimes
there are no rules that would cover the example to be classified. In the former case
we need to apply any of the available conflict resolution strategies, while in the latter
the default class is the most obvious choice.

In this chapter, we shall first give a short review of different approaches used for
classification from rules and then describe a novel one called PILAR (Probabilistic
Improvement of Learning Algorithms with Rules). PILAR is an algorithm for re-
solving rule-conflicts and also for combining rule learning with any other machine
learning method. As shown at the end of the Chapter, it is possible with PILAR
implicitly make any machine learning method capable of learning with arguments.

PILAR receives as input a base method and a set of unordered rules. By compar-
ing probability predictions of the base method with class probabilities in given rules,
the algorithm then observes whether in any of the patterns described with rules, there
is a significant difference in probabilistic prediction of the base method and the cor-
responding rule. In such a situation, the prediction of the base method is accordingly
corrected.

The main idea of the algorithm is to represent given rules as constraints. These

79

7. CLASSIFICATION FROM RULES AND COMBINING ABCN2 WITH OTHER

METHODS

constraints are used in an optimisation algorithm that makes the base method con-
sistent with these constraints. The algorithm is experimentally evaluated with two
base methods; majority classifier (as classification from rules only) and logistic re-
gression (linear probabilistic classifier that can not account for interactions between
attributes).

7.1 Related work

Lindgren [Lin04] described several approaches to combining conflicting rules. They
can be divided into simple approaches, e.g. the original CN2 classification and naive
Bayesian classification and in more complicated meta-learning techniques that learn
on the subset of examples covered by conflicting rules in classification. Lindgren
showed that the latter techniques do achieve better classification accuracies, however
they are inappropriate for our needs - we need the classifications to be explainable in
order to reflect arguments in rules.

Another family of methods for combining conflicting rules falls into the category
of ensemble methods. Normally, one could think that any kind of ensemble learn-
ing is far from interpretable, however in the case of rule learning the learned model
is simply a linear sum of rules’ contributions. Eventually, the induced model is not
much different from a linear regression model, whereas rules act as variables. The
first such system was SLIPPER [CS99] that combined the idea of boosting [FS97]
with the RIPPER [Coh95] algorithm. Variations of the ensemble learning princi-
ple can be later found in several methods for rule aggregation [WI00; RK06; FP08;
DKS08]. We also decided that our algorithm PILAR should induce a linear classifier
from rules. We will give a detailed motivation for our decision later in the Chapter.

7.2 The PILAR algorithm

The problem described above can be formalized as follows.

Inputs:

• A set of learning examples X = {(x1, y1), . . . , (xn, yn)}, where one example
is as usual a pair of attribute-values and a class value. Let the domain of class
variable be values c1, . . . , cm.

80

7.2. The PILAR algorithm

• A global classification model M . The expression Mj(xi) returns the probabil-
ity of class cj for example xi.

• A set of probabilistic unordered rules R = R1, . . . , Rk. Each rule Ri has a
condition part defining the subspace covered by the rule, a class predicted by
the rule, and the probability of predicted class given conditions.

Output:

A corrected classification model M ′, based on M and consistent with the probabilis-
tic predictions of rules R.

7.2.1 Log-linear sum of unordered rules

Let x be an example we would like to classify. We define the log-linear model for
correction of classification model M in two-class domains (c0, c1) as a weighted sum
(W is a real-valued vector):

f(x) = ln
M1(x)

1−M1(x)
+ W · R(x) =

= ln
M1(x)

1−M1(x)
+ w0 + w1 ×R1(x) + . . .+ wk ×Rk(x), (7.1)

where M1(x) is the probability given by the base method for class c1 and weights
w1, . . . , wk given to rules are all nonnegative reals. The term Ri(x) is defined as:

Ri(x) =

0, if conditions of Ri are false for example x;
1, if Ri predicts class c1;
−1, if Ri predicts class c0.

(7.2)

The predicted probability of class c1 for example x is computed from f(x) through
the logit link function:

P̂ (c1|x) =M ′
1(x) =

1

1 + e−f(x)
(7.3)

Although this particular model can only be used in domains with two classes, it
can be extended to its multi-class version, in the same way as basic logistic regres-
sion is extended into a multinomial logistic regression [HL00]. We mentioned that
all the weights should be nonnegative. Negative weights are implausible, since the
rule’s effect on P (c1|x) would be inconsistent with the rule’s class in conclusion. For

81

7. CLASSIFICATION FROM RULES AND COMBINING ABCN2 WITH OTHER

METHODS

example, a rule predicting class c1 should not be allowed to decrease the probability
P (c1|x).

The motivation for using log-linear classification from rules comes from its fol-
lowing four features:

1. Natural translation from the weighted sum to probabilistic prediction. Regard-
less of the value of f(x), the predicted probability P (c1|x) will always be
between 0 and 1.

2. Handling correlations between rules. If two rules are dependent (or even the
same in the most extreme case), the method for fitting weights can assign a
lower weight to one of these two rules.

3. Handling conflicting rules. These rules will have differently signed contribu-
tions in the log-linear sum, hence the probability predicted to examples where
both rules trigger will be somewhere in between the probabilities predicted to
examples where only one or the other rule triggers.

4. Log-linear model enables simple and understandable explanations of classifi-
cations by the means of a nomogram [Har01; MDKZ04]. The nomograms were
successfully used for several methods that can employ a log-linear model (e.g.
logistic regression, SVM, etc.). We show a visualisation of a model obtained
from rules in Chapter 7.3.4.

7.2.2 Rules as constraints

We will first describe the transformation of a set of rules into a set of constraints
that should be satisfied by the corrected classification model M ′. Remember that a
probabilistic IF-THEN rule R has the following structure:

IF Complex THEN P̂R(cj)

The condition term Complex determines the examples that are covered by this rule,
while the conclusion predicts class cj and an estimation P̂R(cj) of its conditional
probability P (cj|Complex). It will soon be evident that the estimation P̂R(cj) needs
to be unbiased, namely, it gives an estimation of the true conditional probability
P (cj|Complex), if averaged over all possible subsets drawn from the population
where Complex is true. Therefore, we shall use the EVC method to compute P̂R(cj),
which was shown to decrease bias due to extensive searching (see Chapter 6).

82

7.2. The PILAR algorithm

Algorithm 7.4 The PILAR algorithm for finding weights W in improved model M ′

that satisfy the constraint in Formula 7.9.
Procedure LCR(M, Rules)

Let W be the weights associated to rules. All weights are set to 0.
Let M ′ be the log-linear model using weights W as shown in Equations 7.3 and
7.1
Let s be 2.
while s > 0.001 do

Let s = s / 2
Let changed = True
while changed do

Let changed = False
Find rule Ri with maximum value: P̂Ri(cj)−

M ′j(XRi)

|XRi |
.

Let NW = W
NW[i] = NW[i] + s

Decrease weights in NW, where NW[j] > 0 and P̂Rj(cj) <
M ′j(XRj)

|XRj |
.

if NW[i] > W[i] then
changed = True
W = NW

end if
end while

end while
Return M ′

The log-linear model returns an estimation of class probability P̂ (cj|xi) for a
specific example xi, and a rule R gives an estimation of class probability P̂R(cj) for
a set of examples (where condition is true). First, we will define a relation between
P̂R(cj) and probability P̂ (cj|xi), and then use this relation as the leading idea of the
PILAR algorithm.

Let Cj(xi) be a random variable with value 1 if the example xi has class value cj ,
and 0 otherwise. The expected value of Cj(xi) is

E(Cj(xi)) = 1× P (cj|xi) + 0× (1− P (cj|xi)) = P (cj|xi) (7.4)

Note that the probability P (cj|xi) is the true class probability of the particular
example. Although we know the actual class value of this learning example, it is not
necessary that this probability is 1, since there can be several examples in the whole
population with equal values of attributes bearing different class values. We will
denote examples covered by rule R with XR. As the expected number of covered

83

7. CLASSIFICATION FROM RULES AND COMBINING ABCN2 WITH OTHER

METHODS

positive examples (again, it can be different from the actual number) in XR is the
expected sum of all Cj(xi) from XR, and,

E

(∑
xi∈XR

Cj(xi)

)
=
∑
xi∈XR

E(Cj(xi)) =
∑
xi∈XR

P (cj|xi) (7.5)

the expected number of examples from class cj in examples XR is the sum of all
probabilities for class cj in examples fromXR. LetM ′

j(XR) be the sum of probability
estimations given by our log-linear model over examples XR:

M ′
j(XR) =

∑
xi∈XR

P̂ (cj|xi) (7.6)

Then,M ′
j(XR) is an estimation of

∑
xi∈XR P (cj|xi). The true conditional probability

of class cj of rule R is:

PR(cj) =

∑
xi∈XR P (cj|xi)
|XR|

(7.7)

The
M ′j(XR)

|XR|
is thus an estimation of PR(cj), therefore the following equality could be

used as a constraint on the learned model:

M ′
j(XR)

|XR|
= P̂R(cj) (7.8)

We say that a rule is consistent with the prediction of a global model when the above
constraint holds. Ideally, we would like to assign such weights to the rules in the
log-linear model that would make all rules consistent. However, in real situations,
this is rarely satisfiable. For example, estimation of class probability in a rule some-
times depends on rule properties (e.g. rule length), and in such situations we could
encounter two different rules covering the same set of examples XR, while having
different estimations of class probabilities P̂R(cj). Hence, for the sake of applicabil-
ity, we need to relax the “ideal” constraint.

The next constraint is based on the following idea: if
M ′j(XR)

|XR|
is higher than P̂R(cj)

and the rule’s weight is 0, while other rules are consistent with the model, then rule
R is redundant with respect to other rules and is not needed in the model. Therefore,
we would like to have a model that uses only a subset of rules in classification, and
disregard redundant ones. This can be formulated as constraint:

∀Ri :

(
M ′

j(XRi)

|XRi |
= P̂Ri(cj) ∧ wi ≥ 0

)
∨
(
M ′

j(XRi)

|XRi |
> P̂Ri(cj) ∧ wi = 0

)
(7.9)

where cj is the class predicted by the rule Ri. This constraint is always satisfiable.
The algorithm that computes such weights is shown as Algorithm 7.4.

84

7.3. Evaluation

7.3 Evaluation

PILAR is an algorithm for improving a learning method on attribute subspaces in-
dicated by classification rules. In the extreme case, where the base method is the
majority classifier, PILAR acts as an approach for classification from rules. This will
also be the subject of our initial evaluation, where PILAR will be compared to some
other strategies for resolving conflicting rules. Later, we will use PILAR to improve
logistic regression and compare its results with the basic logistic regression, and fi-
nally we will show a visualisation of a model produced by PILAR with a nomogram.

7.3.1 Linear models vs. non-linear models

The first experiment serves as a motivation for using linear models. A comparison
between PILAR (learns a linear model) and several other techniques will show that
linear models perform better than the selected non-linear. Currently there are several
non-linear approaches available for classification from unordered rules. They could
be classified in two classes; some of them are simple [CB91] and enable classification
“by hand”, but they usually perform worse with respect to accuracy than some more
sophisticated methods [Lin04]. As already mentioned, the latter methods are not
appropriate for our purpose, because they are less understandable, therefore we shall
here compare PILAR only to the former methods.

We used three different classification methods in our experiments:

CN2 classical CN2 [CN89] classification that sums class distributions of all covering
rules,

BAY a classifier that combines rules with naive-Bayesian formula,

PIL PILAR,

and two different evaluation functions:

m m-estimate (m=2) formula, as used in by Džeroski in CN2 [DCP93], and

EVC EV-correction formula.

Along with the m-estimate formula, we will also set the significance threshold to
0.05, whereas in the EVC case, as the evaluation itself takes care of overfitting, this
threshold will remain at 1.0.

85

7. CLASSIFICATION FROM RULES AND COMBINING ABCN2 WITH OTHER

METHODS

1 2 3 4 5 6 7 8

(evc,PIL)
(m,PIL)

CN2
C4.5 (m,Bay)

(evc,Bay)
(evc,CN2)
(m,CN2)

CD

Figure 7.1: Comparisson of Brier scores’s of different combinations of evaluation
metric and classification strategy.

Together they call for six possible combinations, each described by a pair (evalu-
ation method, classification method). For example, (m,CN2) is a rule learning algo-
rithm, where m-estimate is used for rule evaluation and CN2-type of classification of
rules. Furthermore, we also added the classical CN2 algorithm [CB91] for unordered
rules and the C4.5 algorithm [Qui93] into comparison as the baseline algorithms in
classical rule induction.

As we are focusing on probabilistic IF-THEN rules, Brier score [Bri50] will be
used as the measure for comparison. The results of experiments on several UCI
domains [AN07] are shown in Table 7.1.

We limit ourselves on binary-class problems only. To compare these classifiers,
we follow Demšar [Dem06], and make the Friedman test, which gives 73.04. This
value is well over the threshold for rejecting the null hypothesis, therefore the clas-
sifiers do not perform equally. Next, we calculate the critical difference diagram
(see 7.1) according to the Nemeneyi statistics. As you can see, the statistical com-
parison splits methods in two parts. The left one, the better one, are methods using
PILAR, while on the right part methods uses either CN2 classification method or
Bayesian classification method. The original CN2 and C4.5 algorithms are in the
middle. Interestingly, the original CN2 performs better than the (m,CN2), because
the probabilistic covering strategy increases the correlation between rules - as the ex-
amples are not really removed after covered, which is problematic in the case of CN2
classification technique. On the other hand, PILAR deals efficiently with correlations
between rules.

86

7.3. Evaluation

Ta
bl

e
7.

1:
B

ri
er

sc
or

es
of

C
N

2(
w

ith
m

)a
nd

C
N

2(
w

ith
E

V
C

)u
si

ng
di

ff
er

en
tc

la
ss

ifi
er

s
on

se
ve

ra
lU

C
Id

at
a

se
ts

.B
ol

d
va

lu
es

m
ar

k
th

e
be

st
m

et
ho

d(
s)

fo
rg

iv
en

da
ta

se
t.

D
at

a
se

t
(m

,C
N

2)
(m

,B
A

Y
)

(m
,P

IL
)

(E
V

C
,C

N
2)

(E
V

C
,B

A
Y

)
(E

V
C

,P
IL

)
C

N
2

C
4.

5
ad

ul
t

0.
34

7
0.

41
2

0.
30

7
0.

33
5

0.
51

6
0.

22
4

0.
28

7
0.

26
1

au
to

-m
pg

0.
26

0
0.

19
3

0.
12

5
0.

23
8

0.
20

2
0.

13
9

0.
16

7
0.

16
8

br
ea

st
-c

an
ce

r
0.

38
8

0.
54

1
0.

42
0

0.
37

9
0.

45
7

0.
36

0
0.

50
9

0.
38

2
cr

x
0.

41
6

0.
25

3
0.

23
9

0.
41

6
0.

27
5

0.
19

5
0.

27
6

0.
23

4
ga

la
xy

0.
26

8
0.

11
5

0.
06

3
0.

24
8

0.
13

7
0.

06
3

0.
08

4
0.

10
7

ge
rm

an
0.

41
2

0.
50

7
0.

45
1

0.
40

5
0.

51
8

0.
33

7
0.

39
1

0.
42

2
he

ar
t-

di
se

as
e

0.
43

6
0.

38
3

0.
32

0
0.

41
5

0.
34

4
0.

25
2

0.
35

2
0.

40
4

ho
us

in
g

0.
36

2
0.

25
4

0.
21

3
0.

35
5

0.
27

7
0.

18
6

0.
25

0
0.

28
1

im
po

rt
s-

85
0.

24
0

0.
15

9
0.

15
3

0.
22

2
0.

14
7

0.
14

3
0.

15
8

0.
24

5
kr

-v
s-

kp
0.

46
1

0.
11

0
0.

01
1

0.
45

7
0.

18
4

0.
02

1
0.

02
9

0.
01

1
m

on
ks

-1
0.

37
5

0.
00

3
0.

00
1

0.
29

3
0.

01
7

0.
00

1
0.

00
0

0.
03

0
m

on
ks

-2
0.

44
3

0.
52

2
0.

15
3

0.
49

8
0.

45
9

0.
37

7
0.

46
0

0.
49

4
m

on
ks

-3
0.

30
8

0.
02

5
0.

02
4

0.
22

7
0.

02
7

0.
02

7
0.

06
7

0.
02

2
pr

os
ta

te
0.

43
3

0.
51

4
0.

49
1

0.
41

8
0.

45
8

0.
33

7
0.

44
3

0.
45

3
SA

he
ar

t
0.

43
3

0.
63

5
0.

59
1

0.
42

4
0.

58
5

0.
37

8
0.

53
3

0.
46

0
se

rv
o

0.
17

6
0.

11
0

0.
07

1
0.

15
4

0.
11

8
0.

10
2

0.
09

5
0.

11
1

sh
ut

tle
-l

an
di

ng
-c

on
tr

ol
0.

26
6

0.
06

2
0.

02
3

0.
15

3
0.

09
8

0.
04

5
0.

02
4

0.
03

3
si

ck
0.

11
1

0.
04

6
0.

02
9

0.
11

0
0.

05
9

0.
02

8
0.

04
2

0.
02

2
tic

-t
ac

-t
oe

0.
40

7
0.

09
6

0.
00

1
0.

39
9

0.
08

1
0.

01
3

0.
01

4
0.

22
1

tit
an

ic
0.

37
7

0.
36

8
0.

31
2

0.
37

7
0.

36
8

0.
31

3
0.

31
3

0.
32

1
vo

tin
g

0.
17

0
0.

10
0

0.
06

1
0.

14
4

0.
13

2
0.

06
1

0.
08

7
0.

05
8

w
db

c
0.

24
0

0.
10

0
0.

05
8

0.
23

5
0.

10
8

0.
05

8
0.

10
2

0.
11

1
A

vg
.r

an
k

6.
77

3
5.

38
6

2.
70

5
6.

04
5

5.
40

9
1.

90
9

3.
70

5
4.

06
8

87

7. CLASSIFICATION FROM RULES AND COMBINING ABCN2 WITH OTHER

METHODS

7.3.2 PILAR vs other linear models

Recently, using linear combination for classification from rules has become quite
popular, which is manifested by a large number of publications [CS99; WI00; RK06;
FP08; DKS08]. As in PILAR, these approaches assign a weight to each of the rules.
By fitting weights to rules, the methods try to optimise a selected criterion (e.g. log-
likelihood), which is usually extended with a regularisation term to prevent overfit-
ting. For example, in the RuleFit system [FP08], the criterion is Brier score and the
regularisation term is the “lasso” penalty. Roughly, the optimisation formula is:

argmin
W

N∑
i=1

L(yi, ŷi) + λ ·
m∑
i=1

|wi| (7.10)

L stands for squared error between the true class value yi and its predicted probability
ŷi. The method tries to minimise the formula, the sum of Brier score on learning data
and the sum of absolute values of all weights given to rules. Parameter λ balances
between the accuracy term and the penalising term.

It would be difficult to conduct a fair comparison of all five mentioned methods
and PILAR, as implementation of those classification methods is tightly coupled with
the selected rule learner, whereas we would prefer to compare those methods on the
same rule set. Only such comparison would give an answer to the question: what is
the best way to combine rules. Instead, we implemented a simple algorithm that con-
tains most of the properties of the methods mentioned above. The algorithm receives
a set of rules, and then (1) creates a dataset with the same number of examples as
the learning set, (2) removes all attributes, (3) for each rule adds an attribute, and (4)
for each new example-attribute pair assigns value 1, if corresponding rule covers the
example, and 0 otherwise. The class values of examples stay the same. Afterwards,
(6) logistic regression is used to fit a log-linear model on this data and to obtain
weights for the rules. We used Bayesian logistic regression [GLM07] with Gaussian
prior (the regularisation term), where the penalising parameter was optimised with
an internal cross-validation procedure.

We compared the (EVC,PIL) method with the (EVC,LR), which takes the same
rules as (EVC,PIL), however uses logistic regression (as described above) instead of
PILAR. The results of comparison between the methods are shown in Table 7.2. At a
first glance, there is no real difference between the approaches and also the Wilcoxon
t-test [Wil45] does not reject the null hypothesis that the methods perform equally
(p=0.37).

88

7.3. Evaluation

Table 7.2: Brier scores of (EVC,PIL) and (EVC,LR) methods. Bold values mark the
best method(s) for given data set.

Data set (EVC,PIL) (EVC,LR)
adult 0.224 0.244
auto-mpg 0.139 0.152
breast-cancer 0.360 0.372
crx 0.195 0.188
galaxy 0.063 0.058
german 0.337 0.353
heart-disease 0.252 0.277
housing 0.186 0.179
imports-85 0.143 0.131
kr-vs-kp 0.021 0.013
monks-1 0.001 0.000
monks-2 0.377 0.177
monks-3 0.027 0.023
prostate 0.337 0.372
SAheart 0.378 0.405
servo 0.102 0.110
shuttle-landing-control 0.045 0.014
sick 0.028 0.026
tic-tac-toe 0.013 0.001
titanic 0.313 0.313
voting 0.061 0.064
wdbc 0.058 0.048

In terms of accuracy, both methods perform similarly and therefore we expect
that also all above mentioned methods would perform similarly, if given the same
rules. The only significant difference is on the monks-2 data set. Logistic regres-
sion performs better there, because it is not constrained by the sign of weights, while
PILAR is not allowed to assign negative weights. In the case of monks-2, it is im-
portant to allow negative weights. Overall, the difference in accuracies on other
data sets is only minimal. However, the main problem of classification with logistic
regression is that the user has to select the regularisation parameter or this parame-
ter has to be optimised with the internal cross-validation procedure. In our experi-
ments, the (EVC,LR) needed significantly more time to fit weights when compared to
(EVC,PIL). With respect to accuracy, both methods perform similarly on most data
sets.

89

7. CLASSIFICATION FROM RULES AND COMBINING ABCN2 WITH OTHER

METHODS

7.3.3 Improving machine learning methods: logistic regression

In this experiment, we test the ability of PILAR to improve another general method.
We used stepwise logistic regression [HL00] as the base method. We point out two
interesting questions:

1. Is it possible to improve probabilistic predictions of logistic regression with
rules?

2. Can PILAR decrease the quality of logistic regression?

One would expect that the answer to the first question is yes. Logistic regression
is basically a weighted sum of attributes, and can not by itself successfully exploit
interactions between attributes. This can be a critical weakness in certain domains.
On the other hand, we could also assume that increased complexity (with the use
of rules) will sometimes decrease the quality of the base method, as complexity of
learning method is related to overfitting.

The results of experiment (Brier scores) of logistic regression and corrected lo-
gistic regression are shown in Table 7.3. These results suggest that the answer to
the first question is yes, and to the second is no. The corrected logistic regression is
statistically better than normal logistic regression (Wilcoxon T-test gives p < 0.001),
moreover, the accuracy of corrected logistic regression is only slightly lower on some
data sets (Brier never increased for more than 1%), otherwise the Brier score was bet-
ter - in some cases substantially better. Naturally, it is vital to regard these results as
defeasible, since the results were obtained only on some domains, yet the results are
still very promising.

7.3.4 Visualisation of PILAR model with a nomogram

We selected the Titanic domain for demonstration of a model explanation. Each
example is described with three attributes: sex, age, and status, and classified whether
the passenger has survived or not. The rule learner induced all together 21 rules.

The nomogram is shown in Figure 7.3.4. Only twelve rules were included in
the model, others had weight set to zero. Each horizontal line corresponds to one
rule. The conditions of the rule are described as text at the left. The value yes
on the line denotes the rule contribution if it triggers for the example, otherwise its
contribution is zero. In the first line, we have a rule that always triggers, therefore
its contribution (approx. 0.25) is always added to an example. The next rule is

90

7.3. Evaluation

Table 7.3: Brier scores of logistic regression, PILAR with logistic regression, and
PILAR on rules only on several UCI data sets. The latter method serves merely as
a a reference. Bold values mark the best method(s) for given data set. PILAR with
logistic regression is significantly better than logistic regression (p < 0.001).

Data set LR (PIL,EVC)+LR (PIL,EVC)
adult-sample 0.244 0.217 0.224
auto-mpg 0.149 0.158 0.139
breast-cancer 0.427 0.426 0.360
crx 0.209 0.193 0.195
galaxy 0.067 0.051 0.063
german 0.326 0.324 0.337
heart-disease 0.251 0.251 0.252
housing 0.184 0.175 0.186
imports-85 0.128 0.124 0.143
monks-1 0.362 0.001 0.001
monks-2 0.463 0.421 0.377
monks-3 0.038 0.029 0.027
prostate 0.266 0.259 0.337
SAheart 0.364 0.370 0.378
servo 0.079 0.085 0.102
shuttle-landing-control 0.023 0.024 0.045
sick 0.092 0.032 0.028
tic-tac-toe 0.314 0.024 0.013
titanic 0.327 0.319 0.313
voting 0.070 0.073 0.061
wdbc 0.049 0.057 0.058

IF sex = male THEN survived = no, which has contribution almost -1, etc. When
classifying a new example, one needs to cumulate all contributions of relevant rules
and then read the probability prediction at the bottom ruler.

The nomogram can be also used as a tool for explanation. Three rules for survived =

no are particularly interesting:

1. IF sex = male THEN survived = no

2. IF sex = male AND age = adult THEN survived = no

3. IF sex = male AND age = adult AND status = second THEN survived =

no

91

7. CLASSIFICATION FROM RULES AND COMBINING ABCN2 WITH OTHER

METHODS

Figure 7.2: A nomogram visualising weighted rule’s model for Titanic domain.

All three rules have contribution around -1. According to these rules, being a male
was tough when the accident happened. However, being a male and also an adult
was even worse. Note that being an adult by itself was not necessarily bad, otherwise
such rule would be in the model. Furthermore, an adult male from the second class
stood the least chances for survival.

92

7.4. PILAR + any method = any ABML method

7.4 PILAR + any method = any ABML method

PILAR can be used as a simple bridge between argument based knowledge and any
machine learning method. We start with learning rules from argumented examples
in Algorithm 5.2, but then skip the last part where rules are learned with the stan-
dard CN2ForOneClass. Afterwards, we can choose any machine learning algorithm
to learn a model and use PILAR to combine this model with rules. The resulting
model is based on the chosen learning algorithm corrected with the rules learned
from argumented examples.

Although this simple algorithm can be seen as an argument-based generalisation
of all machine learning algorithms, we believe that it can not replace actual extensions
of these algorithms. These rules learned from arguments can only slightly correct
the base model in some local spots, whereas an AB-extension of the method would
actually learn a completely different model.

7.5 Discussion

PILAR is foremost a method for classification from rules. It combines rules with
a weighted linear sum, where weights are automatically learned from learning data.
Additionally, PILAR also allows improving probabilistic prediction of other proba-
bilistic machine learning methods. Rules are used as constraints on the final model,
requiring that its probabilistic predictions are on average similar to the probabilistic
estimates given by rules.

We studied the usefulness of our method as a rule classification technique and
as a correction method for logistic regression. In both cases, PILAR proved to be
a promising method and statistically outperformed competing methods. Given our
experimental findings, we believe that it would improve (or at least not worsen) any
general classification method. Furthermore, PILAR also preserves the splendid ex-
planation property of rules, e.g. their weights could be visualised in a nomogram.

There already exist some approaches that combine linear classifiers (e.g. logis-
tic regression) with non-linear (decision trees) [LHF03]. While these approaches are
conceptually different from ours, it would be still interesting to explore, if it is, on av-
erage, better to correct a linear classifier with rules or induce one model that contains
both ideas.

93

Chapter 8

ABML Refinement Loop: Selection of
Critical Examples

In ABML experts are asked to provide their prior knowledge in the form of arguments
for specific learning examples rather than the general domain knowledge. However,
asking experts to give arguments for the whole learning set is not likely to be feasible,
because it would require too much time and effort. The following loop describes the
skeleton of the procedure that picks out critical examples - examples that ABML can
not explain without some help:

1. Learn a hypothesis with ABML using given data.

2. Find the most critical example and present it to the expert. If a critical example
can not be found, stop the procedure.

3. Expert explains the example; the explanation is encoded in arguments and at-
tached to the learning example.

4. Return to step 1.

To finalize the procedure we need to contemplate the following two questions:

• How do we select critical examples ?

• How can we achieve to get all necessary information for the chosen example?

95

8. ABML REFINEMENT LOOP: SELECTION OF CRITICAL EXAMPLES

8.1 Identifying critical examples

The main property of critical examples is that the current hypothesis can not explain
them very well, or in other words, it fails to predict their class. Since ABCN2 gives
probabilistic class prediction, we define the most critical example as the example
with the highest probabilistic error. The probabilistic error can be measured in several
ways. One possibility is to learn a hypothesis on the whole set and test on the same
set, although, if the method is prone to overfitting, not many critical examples are to
be found. Therefore, we propose the k-fold cross-validation repeated n times (e.g.
n = 4, k = 10), so that each example is tested n times. The most critical example is
thus the one with highest average probabilistic error.

The selection of the most mispredicted example as the one being shown to the
expert has a possible deficiency. It is not always true that this example will benefit
the most to the quality of the next learned hypothesis. For instance, the example
could be an outlier, where the probability of encountering a similar example is small.
Therefore, the argument would improve classification of this example only and none
other.

This suggests a selection of a critical example that would, after being argumented,
increase the most the quality (e.g. accuracy) of the learned hypothesis. Having a
procedure able to do exactly this, we could expect a smaller number of iterations
required to reach the best possible hypothesis, hence, reducing the overall time of ex-
pert’s involvement in the process. A possible approach would be to apply a clustering
algorithm[JMF99] on all critical examples and choose an example from a large clus-
ter. An argument for this example is likely to help also other examples in the same
cluster. Another approach could be to try a mechanism for outlier detection[HA04].
If an example is an outlier, there is not much chance that the expert will be able to
provide good arguments, and more, such arguments are unlikely to help other crit-
ical examples. Note that a similar problem has been raised several times in active
learning, see for instance [MN98; NS04]. However, by now we were not yet able
to develop a credible algorithm for this task, therefore the question is still open for
future work.

96

8.2. Are expert’s arguments good or should they be improved?

8.2 Are expert’s arguments good or should they be
improved?

Here we describe in detail the third (3) step of the above algorithm, where the expert
is asked to explain the critical example. The provided arguments can be complete
- they perfectly explain the example - or incomplete. In the former case, the expert
provided all relevant information and the process can move to the next step. If ar-
guments are incomplete, then ABML will sometimes be able to explain the example
using arguments and inducing the incomplete part, while sometimes this will still not
be entirely possible. In such cases, we need additional information from the expert.
The whole procedure for one-step knowledge acquisition is described with the next
5 steps:

Step 1: Explaining critical example. In this step the expert is asked the following
question: ”Why is this example in the class as given?” Her answer can be
either ”I don’t know” (she is unable to explain it) or she can articulate a set of
arguments A1, . . . , Ak all confirming the example’s class value. If the system
gets the first answer, it will stop this procedure and try to find another critical
example.

Step 2: Adding arguments to the example. ArgumentsAi are given in natural lan-
guage and need to be translated into domain description language (attributes).
Each argument supports its claim with a number of reasons. When a reason
is simply an attribute value of the example, then the argument can be directly
added to example. On the other hand, if reasons mention other concepts, not
currently present in the domain, these concepts need to be included in the do-
main before the argument can be added to the example.

Step 3: Discovering counter examples. Counter examples are used to spot if argu-
ments are enough to successfully explain the critical example or not. If ar-
guments are incomplete and ABML fails to improve them, then the counter
examples will show where the problem is. Here, ABML is first used to induce
a hypothesis H1 using data without new arguments and H2 using data together
with the new arguments. A counter example is defined as: it has a different
class value from the critical example, its probabilistic error increases in H2

with respect to H1, and H2 mentions arguments (given to the critical example)
while explaining the counter example.

97

8. ABML REFINEMENT LOOP: SELECTION OF CRITICAL EXAMPLES

Step 4: Improving arguments. The experts needs to revise her initial arguments
with respect to the counter example. This step is similar to steps 1 and 2 with
one essential difference; the expert is now asked ”Why is the critical example
in one class and the counter example in the other?” The answer is added to the
initial argument.

Step 5: Return to step 3 if counter example found.

8.3 Similarity and differences with active learning

Active Learning is a type of machine learning where the learning method has certain
control over the selection of learning examples. It is assumed that all possible exam-
ples are initially unclassified, and the learning method gradually selects examples,
which get classified by an expert, and are then used in learning. The approach is
especially useful in domains where labeling (assigning class values) to an arbitrary
example takes a lot of time or/and is expensive. A good active learning method is one
that selects as few learning examples as possible and reaches acceptable accuracy.

The standard loop in active learning consists of the following steps:

1. Select randomly k initial learning examples from the set of unclassified exam-
ples and obtain their class values. These examples represent the current set of
classified examples E.

2. Learn a classifier C given E.

3. Select the most valuable example e (that would improve C the most if added
to E) from the remaining unclassified examples .

4. Obtain class value of e, add it to the set of examples E, and return to step 2.

Different methods in active learning use different strategies to select examples in step
3.

The ABML refinement loop described in the previous sections appears similar
to the loop of active learning. In each turn they both add information to the learn-
ing set of examples; in ABML, additional arguments for an example are provided,
while in active learning a new example is classified and appended to the learning set.
However, although they are similar, they are also very different. In ABML, we as-
sume that all classes of examples are known, but the method can not explain some of

98

8.3. Similarity and differences with active learning

them, therefore needs additional knowledge to explain them. On the other hand, ac-
tive learning does not know the class values and searches for an example that would
improve the learned hypothesis the most. This difference also necessarily defines
different strategies that the approaches adopt. In the argument based machine learn-
ing loop, we try to find an example that poses the greatest problems for the learning
method, while in active learning we select an unclassified example where the current
classifier is the least certain how to classify. Common to both approaches is the de-
sire to find an example with large area of effect - adding information to that example
would increase the accuracy of model the most. We shall quickly review some basic
approaches to active learning (a more comprehensive review can be found in [Set09])
and show how and if their ideas are suitable to be used within the ABML loop. As
we shall see, all methods have limited (if any) usability for the ABML loop.

Uncertainty sampling

In uncertainty sampling, the method selects the example for which the current clas-
sifier is the least certain [LA94], since it assumes that this and similar examples
are therefore not represented enough in the learning set. For example, if we have
a probabilistic classifier and a two-class problem, then the method would select the
unclassified example where the prediction was closest to 0.5.

This approach is intuitive in active learning, however its usefulness in argument
machine learning is unclear. Asking an expert to provide arguments for an example
where the method is the least certain would improve the quality of hypothesis, as the
example is still problematic. Nevertheless, such an example is less critical than the
one with the highest probabilistic error. Moreover, there seems to be no mechanism
to select an example with largest area of effect. Hence, we expect that selection of
critical examples following this strategy would require more steps in ABML.

Query by committee

Here, we first learn a set of classifiers using different machine learning methods.
These classifiers are then tested on unclassified examples. The method selects the
example where these classifiers disagreed the most [SOS92].

This is a similar method to uncertainty sampling. It has the same deficiencies
for ABML loop: example where all classifiers are wrong would be a better selection
method and there are no guidelines how to select an example with largest area of
effect.

99

8. ABML REFINEMENT LOOP: SELECTION OF CRITICAL EXAMPLES

Version space reduction

This principle is described in [CAL94] and it works only for binary classes. The idea
is to learn two models from all examples, the most general, and the most specific
consistent classifier in the given version space [Mit97]. Consistency is defined as
usual as 100% classification accuracy on learning data. The method then selects an
example from the unclassified set, where these two models disagree.

This approach could be also applied in the ABML loop. The example that would
be differently classified by the most general and the most specific hypothesis (exam-
ple would be before removed from learning set), would be shown to an expert for
explanation. However, since version spaces assume noise-free domains, its applica-
bility to real domains is questionable.

Future error reduction

The idea of this method, sometimes referred to also as “estimated error reduction”,
is to select an example that will the most reduce the prediction error of the classi-
fier [RM01]. The selection procedure builds several models from the current learning
set extended by one unclassified example, which is labeled into one of the possible
class values. The selected example is the one that would, on average over all assigned
classes, minimise the expected error on all testing examples.

This principle would in ABML be translated to: select such an example that
would, if argumented, the most reduce the error of the method. This sounds nice, es-
pecially since it would implicitly avoid selecting outliers as critical examples. How-
ever, while learning models for all possible classes for all unclassified examples is
possible, learning over all possible arguments is not, since the number of all possible
arguments is usually very large.

Density-weighted methods

This approach [SC08] was designed to directly deal with the problem of outliers.
The main idea is that informative instances should not only be those which are un-
certain, but also those which are “representative” of the input distribution (i.e., inhabit
dense regions of the input space). Such methods still suffer from the same dilemma
(knowing class values vs. not knowing class values), however, the combination of
the method for finding the most critical example together with the method for finding
a representative example seems very promising.

100

Part III

Experiments and Evaluation

101

Chapter 9

Introductory experiments

In this last part of the Thesis, we will describe several applications and experiments
where ABCN2 was involved. These experiments will be used to demonstrate the
functionality of ABCN2 and to compare the results of learning with or without ar-
guments. They will also illustrate the argument based machine learning loop that is
switching between learning and querying domain experts. Furthermore, these exper-
iments shall also be used as an evaluation of the ABCN2 method. A problem with
evaluation is that a statistical comparison of ABCN2 and other (non-abml) methods is
virtually impossible. As each experiment involves asking domain experts questions
about the domain, which requires some of their time, these experiments can relatively
take a lot of time (they can not be run automatically). For this reason, we can do only
a smaller number of experiments and in each of them qualitatively answer some of
the following questions:

• Does learning with arguments provide favorable hypotheses in comparison
with learning without arguments? When should we prefer one or the other?
This will be measured in terms of accuracy and comprehensibility of learned
hypotheses.

• How effective is the method for selection of critical examples, that is, how
well does this mechanism guide the expert’s attention to important cases and
missing information?

• How difficult is it for the experts to provide their prior knowledge in the form
of arguments?

103

9. INTRODUCTORY EXPERIMENTS

• Can we efficiently reconstruct an existing knowledge base? Is it possible to
use an existing knowledge base as a source of arguments, where the result of
learning is then an updated knowledge base?

• What if the explanation of examples does not mention the attributes describing
the example? We will see that arguments can also suggest new attributes.

• Can relevant arguments be extracted automatically from relevant literature,
rather than provided by an expert?

• What if arguments provided are not perfectly correct? What if the arguments
are not correct at all - how to deal with noise in experts’ knowledge?

We split the evaluation to four chapters. The present one will describe four ex-
periments with ABCN2 to illustrate the core idea of ABCN2: learning to classify an-
imals, an experiment using the “South African Heart disease” UCI domain [AN07],
an application to a legal domain, and an application to prognosis of bacterial infec-
tions in geriatric population. All four experiments are basic by nature. They do not
require any special handling with arguments, where arguments are provided by an
expert and are simply conjunctions of available attributes. In the following chapter,
we will describe some experiments where arguments do mention only available at-
tributes, but also others yet not present in the domain or a combination of current
attributes that can not be easily expressed with a conjunction of reasons. The next
chapter will demonstrate how relevant arguments can be extracted from text sources
and how helpful are they. In the last chapter of this part, we will cope with the
problem of erroneous arguments and how prone is ABCN2 to these errors.

9.1 Animal classification

The ZOO data set [AN07] contains descriptions of 101 animals (instances) with 17
attributes: hair, feathers, eggs, milk, predator, toothed, domestic, backbone, fins, legs,
tail, catsize, airborne, aquatic, breathes, venomous, and type, which is the class
attribute. Type has seven possible values: mammal, bird, reptile, fish, amphibian,
insect, and other. The main advantage of this data set is that, just using an encyclo-
pedia, we can provide good arguments to automatically selected critical examples.
We expect that using arguments will help to improve the comprehensibility and clas-
sification accuracy of induced rules.

104

9.1. Animal classification

Figure 9.1: Rules induced by CN2 for the ZOO data set.

IF milk=yes THEN type=Mammal
IF fins=yes AND breathes=no THEN type=Fish
IF feathers=yes THEN type=Bird
IF legs=6 AND breathes=yes THEN type=Insect
IF legs=4 AND hair=no AND predator=yes THEN type=Amphibian
IF legs=0 AND venomous=yes AND catsize=no AND toothed=yes THEN
type=Reptile
IF toothed=no AND legs=4 AND hair=no THEN type=Reptile

The set was split into a learning set (70%) and test set (30%). Figure 9.1 shows
the set of induced rules without using any arguments.

Considering learning data alone, the induced rules fit perfectly. However, clas-
sification accuracy on the test set (which is what truly matters) is only slightly over
90%. Now, according to our method of involving argumented examples (chapter 8),
we have to find the most problematic example using the learning set only. The inter-
nal (on learning set only) cross-validation procedure found that the most frequently
misclassified example was a reptile, the tortoise. Notice that the rules covering rep-
tiles split reptiles in two subgroups; in the first group are legless, poisonous, small,
and toothed reptiles (snakes) and in the other are toothless, with four legs, and hairless
reptiles (turtles). A problem with these two rules is that there also exist four-legged
reptiles with teeth (crocodile, tuatara, etc. - tuatara was misclassified in the test set).
A good argument for tortoise to be a reptile is that it has the backbone and it lays
eggs (tortoise is a reptile because backbone=yes AND eggs=yes). Using that argu-
ment for tortoise in ABCN2, the two rules for reptiles were replaced by the following
two rules:

• IF backbone=yes AND eggs=yes AND aquatic=no AND feathers=no THEN
type=Reptile

• IF eggs=no AND breathes=no THEN type=Reptile

Naturally, our argument is not a perfect general rule for recognizing reptiles, so
it was extended by ABCN2 with attributes aquatic and feathers. The first attribute
separates reptiles from fish and the second from birds, as both, fish and birds, have
backbone and lay eggs. It is interesting that our argument did not only affect the rule
that was learned from this argument, but also the other rule for reptiles.

105

9. INTRODUCTORY EXPERIMENTS

The next problematic example found was a sea snake (a reptile). A sea snake is
an air-breathing snake that lives underwater. According to encyclopedia, a sea snake
should be correctly classified with the above rule, however we noticed that, in the
data, sea snake is characterized as a non-breathing reptile and that it does not lay
eggs. It is obviously a mistake in data and is also the reason for the induction of
the second rule. It is interesting to note how the interactive use of our AB learning
method also helps to identify errors in data.

The next problematic example found in the learn set was a newt. The argument
was provided that the newt is an amphibian because it has backbone, lays eggs and is
related to water. This resulted in the rule:

IF backbone=yes AND aquatic=yes AND eggs=yes AND legs=4
THEN type=Amphibian

After adding these arguments to the two examples, ABCN2 induced a perfect set
of rules for the ZOO data set. There were no misclassified examples in the test set.

This example clearly illustrates the effectiveness of our method for choosing crit-
ical examples (both identified examples were really critical) and shows how argu-
ments can be used to learn concepts that are otherwise very hard to learn. The exam-
ple also nicely illustrates that it is much easier to give arguments only to an individual
example (e.g why tortoise is a reptile), than it would be to articulate general rules
that correctly classify the animals. Moreover, the rules learned from arguments are
consistent with prior knowledge and the resulting hypothesis achieved higher classi-
fication accuracy than the initial (learning without arguments) one.

9.2 Welfare benefit approval

In this section, we shall describe an experiment in a domain of law published in one
our earlier papers [MvBC+06]. At that time, we had not yet developed EVC and
PILAR (Chapters 6 and 7), therefore the ABCN2 in this section uses the original
CN2’s classification and rule evaluation.

The problem of many areas of law - especially administrative law - is that many
cases are routinely decided, which often involve the exercise of some discretion, or
involve some degree of operationalisation of the concepts used in the legislation:
for example aged over 65 rather than elderly [BC91b]. We would generally wish to

106

9.2. Welfare benefit approval

assume that such discretion or operationalisation is consistent so that like cases are
decided in a like manner, that some kind of rule is being followed.

We would like to analyse if there is a way of deciding what the rule being followed
is from an automated consideration of the data. Such a question has relevance to a
number of interesting and important issues:

• If there is well defined legislation which defines what the rule should be we
may wish to ensure that the rule is being followed;

• If the domain is a discretionary one, we may wish to discover the rule itself;

• Similarly, we may wish to discover the way in which the stated conditions have
been operationalised;

• Some people have argued that the rule followed in practice is different from
the rule which exists in theory (or which might be elicited from experts). For
example Edwards [Edv95] suggested that some areas of law exhibited a sys-
tematic bias. Such conjectures could be informed and justified were we able to
discover the ”real” rule from a database recording the actual practice.

If therefore we had a reliable technique to extract rules explaining the data in a
field of law, it would have many interesting uses.

One problem with many experiments to explore the efficacy of techniques de-
signed to extract knowledge from data is that they use data for which the relationships
present are not known at the outset. As a result, what has been discovered, and what
has been missed, cannot be established definitively. Often accuracy of classification
is taken to validate the knowledge extracted, but this test is, as will be discussed be-
low, rather one-sided. In the work reported here we will use a specially constructed
data set, the properties of which are known, and which is thus able to serve as a
measurable test of the technique.

The data we use has been used in several previous AI and Law experiments, re-
ported in [BC93; BCC00; JG03]. The use of this same data set allows for comparison
between what can be derived using the various techniques.

9.2.1 The data set

As previously mentioned the data set used in these experiments is that first used
in [BC93]. The data concerns a fictional welfare benefit. The benefit is payable if six

107

9. INTRODUCTORY EXPERIMENTS

conditions are satisfied. These conditions were chosen to represent different kinds of
condition that are found in the legal domain, so that we can see whether the different
form of conditions affects their discoverability.

The notional benefit was a fictional welfare benefit paid to pensioners to defray
expenses for visiting a spouse in hospital. The conditions were:

1. The person should be of pensionable age (60 for a woman, 65 for a man);

2. The person should have paid contributions in four out of the last five relevant
contribution years;

3. The person should be a spouse of the patient;

4. The person should not be absent from the UK;

5. The person should have capital resources not amounting to more than 3,000;

6. If the relative is an in-patient the hospital should be within a certain distance:
if an out-patient, beyond that distance.

These conditions represent a range of typical condition types: 3 and 4 are Boolean
necessary conditions, one which should be true and one false; 5 is a threshold on a
continuous variable representing a necessary condition, and 2 relates five Boolean
variables, only four of which need be true. 1 and 6 relate the relevance of one variable
to the value of another: in 1 sex is relevant only for ages between 60 and 65, and
in 6 the effect of the distance variable depends on the Boolean saying whether the
patient is an in-patient or an out-patient. We can see these six conditions either
as explicit conditions or as ways of making operational concepts such as elderly,
sufficient contribution record, close relative, presence in the UK, insufficient capital
resources, and attributable expenses respectively.

A possible criticism of this experiment could be based on the fact that our ex-
perimental data was artificial rather than real world. However, in machine learning
experimentation with artificial data is quite common and acceptable in testing ma-
chine learning methods. It has the advantage over the use of real-world data in that
the experiment is better controlled and the success of learning is easier to assess.
Moreover, the underlying rules used to generate the synthetic data were not told be-
forehand to those conducting experiments with ABCN2, but were known only to the
data owner (Trevor Bench-Capon).

108

9.2. Welfare benefit approval

For this experiment a data set of 2400 records was used: 1200 satisfying all of the
conditions, and equal numbers of the remainder being designed to fail. For records
designed to fail one of the conditions, satisfaction or otherwise of the remaining con-
ditions was decided randomly for each condition separately. There are thus twelve
attributes relevant to the decision: age, sex, the five contribution conditions (called
cont5, cont4, cont3, cont2 and cont1), spouse, absent, capital, distance and inpatient.
In addition to these attributes each record contains fifty two irrelevant attributes, half
of which are continuous and half Boolean. An ideal set of rules would be:

1. IF age < 60 THEN qualified = no;

2. IF age < 65 and sex = m THEN qualified = no;

3. IF any two of cont5, cont4, cont3, cont2 and cont1 = n
THEN qualified = no;

4. IF spouse=no THEN qualified=no;

5. IF absent=yes THEN qualified=no;

6. IF capital>3000 THEN qualified=no;

7. IF inpatient=yes AND distance> 750 THEN qualified=no;

8. IF inpatient=no AND distance≤ 750 THEN qualified=no;

Probably we should expect (3) to be expressed as ten separate rules containing
each pair of the contribution factors, which would be a total of sixteen rules to de-
scribe the problem fully.

9.2.2 Experiment with ABCN2

To evaluate the results produced by ABCN2, we split the original data (2400 records)
into a learning set containing 70% of the cases, and a test set (the remaining 30%)
used to assess the accuracy of the generated rules on new cases. The random selection
was stratified to pertain the class distribution.

The first set of rules was generated from examples without any arguments. So the
resulting rules were as if generated with CN2. These rules were:

1. IF capital > 2900 THEN qualified = no;

109

9. INTRODUCTORY EXPERIMENTS

2. IF age ≤ 59 THEN qualified = no;

3. IF absent = yes THEN qualified = no;

4. IF spouse = no THEN qualified = no;

5. IF cont4 =no AND cont2 = no THEN qualified=no;

6. IF age > 89 THEN qualified = no;

Of these (1) - (5) are correct (or very close). Nine contributions rules and the two
distance rules are missing and rule (6) is wrong. There is thus considerable scope
for improvement. None the less a high degree of accuracy is achieved by these six
rules: 99% for both the learning and the test sets. Accuracy of classification is not,
however, of prime interest: the motivations given at the beginning of section make it
clear that it is the interpretability of the rules discovered that is of primary interest.

After inducing these rules with CN2, our plan was to give arguments to some
of the examples in the learning set and using ABCN2 to induce better rules. In the
case of our legal data, the procedure for finding the most critical example found
a misclassified example that failed on the contributions condition. The argument
given for this example was that cont5, cont4 and cont1 are all false. When this
argumented example, together with all the other (non-argumented) examples was
given to ABCN2, two additional contribution rules were induced:

IF cont5 = no AND cont4 = no AND cont1 = no

THEN qualified = no;

IF cont2 = no AND cont3 = no THEN qualified = no;

and the accuracy increased slightly.

In a third learning iteration, an argument was added to an additional misclassified
case in which distance was too great for an inpatient. This time the erroneous rule (6)
disappeared and was replaced by a rule relating to inpatiency and distance (although
with an approximate threshold) and another contributions rule:

IF inpatient = yes AND distance > 735 THEN qualified = no;

IF cont1 = no AND cont5 = no THEN qualified = no;

110

9.2. Welfare benefit approval

Iterations four, five and six added three more arguments based on failure of the
contribution conditions, which resulted in a different contributions rule. In iteration
seven, the argument was given that distance was too small for outpatient. This pro-
duced the rule

IF inpatient = no AND distance ≤ 735 THEN qualified = no;

and rearranged the contribution rules somewhat.
At this point there were no critical examples found any more, and so no further

argumentation with our iterative procedure was possible. The final accuracy on the
test set was 99.8%. This means that one out of 720 test cases was misclassified, and
all the rest were classified correctly. The final set of rules were:

1. IF capital > 2900 THEN qualified = no;

2. IF age ≤ 59 THEN qualified = no;

3. IF absent = yes THEN qualified = no;

4. IF spouse = no THEN qualified = no;

5. IF cont4 = no AND cont2 = no THEN qualified = no;

6. IF inpatient = yes AND distance > 735.0 THEN qualified = no;

7. IF inpatient = no AND distance ≤ 735 THEN qualified = no;

8. IF cont3 = no AND cont2 = no THEN qualified = no;

9. IF cont5 = no AND cont3 = no AND cont1 = no

THEN qualified = no;

10. IF cont4 = no AND cont3 = no AND cont1 = no

THEN qualified = no;

11. IF cont5 = no AND cont4 = no AND cont1 = no

THEN qualified = no;

(1) - (5) are all good rules and remain from the first pass. (6) and (7) have
the right format, but the threshold is slightly inaccurate. The remaining four rules
approximate the ten ideal contribution rules. The total number of argumented ex-
amples after the seven iterations was seven. The one misclassified example was

111

9. INTRODUCTORY EXPERIMENTS

(omitting the irrelevant attribute values): ((age = 84, sex = male, cont1 = no,
cont2 = yes, cont3 = no, cont4 = yes, cont5 = yes, spouse = yes, absent = no,
capital = 130, distance = 1320, inpatient = no), qualified = no). This example
is misclassified because the particular combination of contribution conditions is not
covered by the approximate contribution rules induced.

Learning from artificial data sets is usually considered easier than learning from
real world data sets. One reason for this is that artificial data are typically noise-free
whereas real world data typically contain noise. So to cope with real world data, a
learning method has to be able to deal with noise. To analyse the ABCN2’s ability
to deal with noise in data, we artificially introduced random noise of varying severity
in our learning data as described below. Intuitively we expected that background
knowledge in the form of arguments should improve the method’s resistance to noise
in comparison with CN2. This expectation was confirmed by the experiments.

The experimental procedure for this experiment was as follows. First, we split
the data set to learning set (70%) and test set (30%). Then we added random noise
into the learning set, induced rules with both CN2 and ABCN2, and measured the
accuracy of both sets of rules on the (noise-free) test set. To study how the severity
of noise affects the success of learning, we repeated the experiment for various rates
of noise. The chosen rates were: 0%, 2%, 5%, 10%, 20%, and 40%. A noise rate p
means that with probability p the class value of each learning example is replaced by
a random value drawn from {yes, no}with distribution (0.5, 0.5). Each time CN2 and
ABCN2 were run with correspondingly ”noised” examples plus the same noise-free
argumented examples defined above. This whole procedure was repeated 10 times in
order to obtain confidence intervals of the estimated average classification accuracy
for both CN2 and ABCN2 for each noise rate.

Figure ?? and Table 9.1 show the results of CN2 and ABCN2. Both methods were
run with the default settings of their parameters. These standard values are: m=2 in
m-estimate, α=0.001(likelihood ratio statistics threshold), and minimal coverage of
a rule is set to 2 (that is, a rule to be acceptable has to cover at least two examples).

This figure shows that, as expected, ABCN2 clearly outperforms CN2 when rate
of noise in data increases. The difference in average accuracies between ABCN2
and CN2 jumped from 0.3% at 0% noise to 3.3% at 20% and to 1.7% at 40% noise.
ABCN2 outperformed CN2 on 0%, 20%, and 40% noise with high statistical signif-
icance (t-test,p<0.001; see Table 9.1). ABCN2 was also the better method for other
noise rates but with lower significances.

The ability to handle a large amount of noise is very important in the kind of rou-

112

9.2. Welfare benefit approval

0% 2% 5% 10% 20% 40%

noise rate

0.8

0.9

1.0

CA

×
×

×

×

×

×

•
•

•

•

•

•

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

...

CN2 ×
ABCN2 •

Figure 9.2: CN2 and ABCN2 compared on learning data sets with different propor-
tions of noise in class variable.

noise CN2 ABCN2 Sig.
0% 0.9947±0.0010 0.9976±0.0005 <0.001
2% 0.9778±0.0030 0.9842±0.0020 0.002
5% 0.9636±0.0034 0.9696±0.0017 0.005
10% 0.9351±0.0053 0.9469±0.0051 0.037
20% 0.8869±0.0079 0.9200±0.0056 <0.001
40% 0.8326±0.0068 0.8503±0.0088 0.001

Table 9.1: Results of CN2 and ABCN2 on noisy data. The first column shows noise
rates, second and third contain average accuracy and standard error of accuracy es-
timate for CN2 and ABCN2 respectively, and the last column gives significances of
differences between averages computed with pairwise t-test.

113

9. INTRODUCTORY EXPERIMENTS

tine legal decision making we are addressing. Errors rates are very high: Groothuis
and Svenson[GS00] report experiments which suggest that 20% may be a low esti-
mate of incorrectly decided cases. The problem is internationally widespread. The
US National Bureau of Economic Research reports of a particular benefit∗:

“The multistage process for determining eligibility for Social Secu-
rity Disability Insurance (DI) benefits has come under scrutiny for the
length of time the process can take - 1153 days to move through the
entire appeals process, according to a recent Social Security Administra-
tion (SSA) analysis - and for inconsistencies that suggest a potentially
high rate of errors. One inconsistency is the high reversal rate during the
appeals process - for example, administrative law judges, who represent
the second level of appeal, award benefits in 59% of cases. Another in-
consistency is the variation in the award rates across states - from a high
of 65% in New Hampshire to a low of 31% in Texas in 2000 - and over
time - from a high of 52% in 1998 to a low of 29% in 1982.”

Again an official UK Publication produced by the Committee of Public Ac-
counts†:

“Finds that the complexity of the benefits system remains a major
problem and is a key factor affecting performance. Skills of decision-
makers need to be enhanced through better training and wider experi-
ence. Too few decisions are right first time, with a error rate of 50%
for Disability Living Allowance. There are also regional differences in
decision making practices that may lead to payments to people who are
not eligible for benefits.”

This makes it clear that robustness in the face of large amounts of noise is essen-
tial if a learning techniques is to be applied to data from this domain.

9.2.3 Discussion

In this experiment, we found that ABCN2 performed a little better than CN2 in terms
of accuracy - which is very well indeed. However, the quality, in terms of inter-

∗From Web Page: http://www.nber.org/aginghealth/winter04/w10219.html
†Getting it right: Improving Decision-Making and Appeals in Social Security Benefits. Commit-

tee of Public Accounts. London: TSO, 2004 (House of Commons papers, session 2003/04; HC406)

114

9.3. Infections in elderly population

pretability, of the rules generated showed a crucial advantage of ABCN2. The argu-
ment based machine learning loop enabled adding domain knowledge in the form of
the justification of particular decisions, and this was able to give a great improvement
to the quality of the rules. Additionally, we explored the robustness of ABCN2 in the
face of erroneous decisions. It was found in the experiment that ABCN2 is more
robust against noise than its non-argument original CN2. This is important because
many of the administrative law applications to which we would wish to apply the
technique exhibit quite large error rates [GS00].

9.3 Infections in elderly population

In this section, we will describe an application of ABCN2 to a medical domain [vMVB06].
The particular problem is to build a model from data which would help the physician,
at the first examination of an older patient with an infection, to decide the severity of
the infection and consequently, whether the patient should be admited to the hospital
or could be treated as an outpatient.

The elderly population is a unique one and that is also true from the medical
perspective. Compared to younger population, people over 65 years of age usually
react to a disease in a different way. Many symptoms may not even be present or
they are masked by others which makes it a very difficult task for a medical doctor
to diagnose a condition, to decide a proper treatment or to estimate the patient’s
risk of death. From a wider perspective, the proportion of elderly in the population
is growing rapidly and so are the costs for medical treatment, which presents an
emerging economic problem.

9.3.1 Data

The data for our study was gathered at the Clinic for Infectious Diseases in Ljubljana,
from June 1st, 2004 to June 1st, 2005. The physicians included only the patients over
65 years of age with CRP value over 60 mg/l, which indicated a bacterial etiology of
the infection. The patients were observed 30 days from the first examination or until
death caused by the infection. The data includes 40 clinical and laboratorial parame-
ters (attributes) acquired at the first examination for each of 298 patients (examples).
The infections are distinguished with respect to the site where bacteria is found or
on the clinical basis (respiratory, urinary tract, soft tissues, other). The continuous

115

9. INTRODUCTORY EXPERIMENTS

attributes were categorized by the physician. The distribution of the class attribute
death (whether death has occurred or not) is the following:

• 34 examples (11,4%) for ’death = yes’

• 263 examples (88,6%) for ’death = no’

9.3.2 Arguments

Attribute Value
GENDER Z Positive arguments
AGE YEARS 92
AGE C DEATH=YES because RESPIRATORY RATE D=“>= 16”
NURSING HOME RESIDENT NO DEATH=YES because SATURATION D=“<= 90”
COMMORBIDITY 0 DEATH=YES because BLOOD PRESSURE D=”<= 100”
DIABETES NO DEATH=YES because TEMPERATURE D=“> 37.9”
HEART NO DEATH=YES because LEUKOCYTES D=“>= 12”
KIDNEY NO DEATH=YES because CREATININE D=“>= 100”
LIVER NO DEATH=YES because BLOOD UREA D=“>= 13”
LUNG NO DEATH=YES because NA D=“> 147”
IMMUNITY NO DEATH=YES because AGE YEARS is high
CENTRAL NERVE SYSTEM NO DEATH=YES because WEAKNESS=YES
MOBILITY YES DEATH=YES because CONSCIOUSNESS=DISSORIENTED
CONTINENCE YES
BEDSORE NO Negative arguments
CATHETER NO
IMPLANT NO DEATH=YES despite MOBILITY=YES
VOMITING NO DEATH=YES despite CONTINENCE=YES
DIABLOODPRESSUREHEA NO DEATH=YES despite TROMBOCYTES D=“>= 100”
WEAKNESS YES DEATH=YES despite HEART RATE D=“< 100”
CONSCIOUSNESS DISSORIENTED DEATH=YES despite RODS D=“< 10”
TROMBOCYTES D >= 100 DEATH=YES despite CRP D=“< 150”
TEMPERATURE D > 37.9 DEATH=YES despite COMMORBIDITY=0
RESPIRATORY RATE D >= 16
SATURATION D <= 90
HEART RATE D < 100
BLOOD PRESSURE D <= 100
LEUKOCYTES D >= 12
RODS D < 10
CRP D < 150
CREATININE D >= 100
BLOOD UREA D >= 13
GLU D < 15
NA D > 147
INFECTION TYPE RESPIRATORY
DEATH (class value) YES

Table 9.2: A sample argumented example from the infections database.

The physician, who was treating the patients, provided positive and negative ar-
guments to 32 examples, where all argumented examples were from class death =
yes, namely she gave the reasons she believed caused death for each selected patient.

116

9.3. Infections in elderly population

A sample argumented example is shown in Table 9.2. All arguments provided men-
tion only one attribute value as a reason, since the expert believed that influences are
independent; one bad value of an attribute will always be bad, no matter what the
other values of attributes are. The critical examples were selected manually by the
expert prior to learning, and not by the method itself.

One could, at this point, ask an interesting question about these arguments: whether
they would, if used as rules, describe the domain sufficiently well. We built a simple
classifier from the given arguments and tested it on the same data set; for each case,
we counted the number of applicable arguments for class death = yes and compared
this number to the number of arguments for class death = no. The accuracy of a such
classifier is only slightly above 40%, therefore there is still a large space available
for machine learning to improve. Since the default accuracy in this domain is 88.6%
it indicates that the knowledge which is hidden in the arguments is far from perfect.
However, please note that this experiment is not used to validate the expert knowl-
edge. To do that, at least the arguments to examples from the opposite class should
be given as well. Our intention is merely to show that the knowledge given by the
arguments is neither perfect nor complete though it can still help to improve learning.

9.3.3 Experiments

Learning and testing was performed by 10-fold cross validation which was carried
out 10 times with different random splits of examples into folds. We were able to
use cross-validation in this experiment, since the arguments were provided prior to
learning. We compared the algorithms ABCN2, CN2, Naı̈ve Bayes (NB), decision
tree (C4.5) and logistic regression (LogR). Algorithms are compared with regard
to classification accuracy, area under ROC (AUC) and Brier score. The results are
shown in Fig. 9.3- 9.5.

Observing classification accuracy, that is the percentage of correct classifications,
we can see that CN2, ABCN2 and C4.5 achieve similar results while NB and LogR
perform significantly worse (Fig. 9.3). Although classification accuracy is important
it should be accompanied by other estimates, especially because the majority classi-
fier itself is quite accurate in this domain due to imbalance between the two classes.
Therefore, we also measure AUC and Brier score. Figures 9.4 and 9.5 show that,
according to AUC and Brier score, ABCN2 significantly outperforms all other meth-
ods. It is important to note that for imbalanced domains, as our domain, AUC and
Brier score are more relevant measures of success than accuracy.

117

9. INTRODUCTORY EXPERIMENTS

CN2 ABCN2 NB C4.5 LogReg

0.84

0.85

0.86

0.87

0.88

0.89

0.9

class: DEATH (yes/no)

C
la

ss
if

ic
at

io
n

ac
cu

ra
cy

Figure 9.3: Mean values and standard errors of classification accuracy across tested
methods.

9.3.4 Discussion

ABCN2 achieved better results than CN2 according to all three measures by using
arguments given by expert. The question is how the induced hypotheses from both
measures differ and why ABCN2 is the better method. To examine the hypotheses,
we induced a set of rules from the whole data set with ABCN2 and CN2. As the
arguments were given only to examples with class value death=yes, the induced rules
for death=no were the same for both methods. Both methods induced 14 rules for
class death=yes, however there were two important differences between these two
sets of rules. First, due to the restriction of hypotheses space with arguments, about
half of the rules were different. While inspecting the rules that were the same in
CN2’s and ABCN2’s set, we noticed that the quality estimates of these rules were
different. For example, the rule:

IF trombocites<100 AND mobility=no THEN death=yes

was present in both rule sets. It covers 6 examples with class value death=yes and 1
with death=no, which means that the relative frequency of death=yes is 6/7 = 0.86.
However, extreme value correction of relative frequency estimated the probability
of this class (given that the conditions are true) as 0.47, which is much less than

118

9.4. South Africa heart-disease domain

CN2 ABCN2 NB C4.5 LogReg

0.6

0.65

0.7

0.75

0.8

0.85

class: DEATH (yes/no)

A
U

C

Figure 9.4: Mean values and standard errors of AUC across tested methods.

0.86. This happens because there is a high probability that such a rule would be
found by chance. On the other hand, when learning with ABCN2, the evaluation
of the same rule is 0.67. In CN2, this rule was obtained by searching the whole
space unguided by expert knowledge while in ABCN2 the rule was built from the
argument ’death=yes BECAUSE trombocites<100’. The search space in ABCN2 is
smaller (only one condition was added), which means that the probability of finding
such a rule by chance is lower. So, the expected quality of the rule is higher.

We also asked our expert (Jerneja Videčnik) to examine the rules and compare
them. Unfortunately, she could not decide which rules are more understandable to
her. We believe that this occurs due to the large number of arguments with only one
reason given to each example, while our restriction is that the rule must be consistent
with at least one positive argument. The rule must, therefore, contain only one of the
given reasons and can neglect the others.

9.4 South Africa heart-disease domain

South Africa heart-disease domain (SAHeart) [RdPB+83] contains a sample of 462
cases (male) in heart-disease high-risk region of the Western Cape, South Africa.
Learning examples are described with the following 10 variables: systolic blood

119

9. INTRODUCTORY EXPERIMENTS

CN2 ABCN2 NB C4.5 LogReg

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

class: DEATH (yes/no)

B
ri

er
 s

co
re

Figure 9.5: Mean values and standard errors of Brier score across tested methods.

pressure, cumulative tobacco, cholesterol, adiposity, family history, type-A behav-
ior, obesity, alcohol, age, and coronary heart disease (chd) as the class attribute. The
task is to explain which attributes cause coronary heart disease.

In this experiment we used our own vague knowledge, obtained in schools, from
newspapers or internet sources, about this domain for explaining some of the exam-
ples. So the main difference between this experiment and previous three is that there
is no real domain expert involved and the knowledge about the domain is superficial
(might be also wrong). This experiment can be regarded also as a test of ABCN2 for
handling wrong arguments. However, as we will see, despite our simple, imperfect
domain knowledge, arguments still had a minor positive impact on the results.

We began the experiment by testing some standard machine learning algorithms:
CN2 [CB91], CN2e (CN2 extended with PILAR classification, see Chapter 7 and
extreme value correction, see Chapter 6), logistic regression [HL00], naive Bayesian
classification [KK07], SVM [Vap95; CL01], and C4.5 [Qui93]. The methods learned
on the learn set (60 % stratified sample) and tested on the other 40% of the complete
sample. The Table 9.3 shows the results. Logistic regression outperforms all other
methods, at least according to the probabilistic measures, while CN2e, NBC, and
SVM are closely following. The terrible performance of CN2 can be attributed to
almost nonexistent overfitting prevention.

120

9.4. South Africa heart-disease domain

Table 9.3: Accuracy of some standard machine learning methods on SA Heart data
set. Accuracy is measured with classification accuracy, AUC, and brier score.

Method CA AUC Brier score
CN2 0.65 0.66 0.57
CN2e 0.71 0.77 0.37
LogReg 0.72 0.80 0.34
NBC 0.73 0.77 0.38
SVM 0.72 0.77 0.38
C4.5 0.73 0.72 0.40

Afterwards, we tried our technique to see if we can improve the accuracy of
ABCN2 (CN2e+arguments) and argumented the first 10 problematic examples. Some
examples of arguments were:

1. One patient was 55 years old smoker. We deemed these two attributes as im-
portant, therefore our argument was: chd=yes because age is high (age>) and
tobacco>0.

2. Another patient had high low density lipoprotein cholesterol (the bad one),
was aged 52, and the disease was known to happen in his family. High bad
cholesterol, age, and genetics are known to be one of the prevailing factors for
this disease. Therefore, the argument appended to this patient was: chd=yes
because age>45 and family history=present and cholesterol> 5.

3. Then, there was a also patient that did not have heart disease, but ABCN2
classified it wrong. It was a young patient (age 32) without any family his-
tory of this disease. The argument was: chd=no because age<40 and fam-
ily history=absent.

4. Another argument was: chd=yes because spb>200 (systolic blood pressure is
extremely high, higher than 200).

With altogether 10 arguments the classification accuracy of ABCN2 increased from
71% to 75%, which is a nice improvement. The probabilistic measures, however, did
not change much; AUC stayed the same, while Brier score decreased from 0.37 to
0.36 (which is good). We are strongly aware that our arguments might not be always
correct, and that a professional cardiologist could construct much better arguments

121

9. INTRODUCTORY EXPERIMENTS

for problematic examples. However, the idea of this experiment was to show how
such, imperfect arguments can still improve the quality of induced hypothesis.

At this point of the experiment, we wondered if it would be possible to combine
high classification accuracy of ABCN2 with good probability prediction of logistic
regression. We tried to use the ability of PILAR’s classification (see chapter 7) to
improve other methods using rules, in this case the logistic regression. Initially, we
combined logistic regression with CN2e (without arguments) and got exactly the re-
sults of logistic regression - rules did not contribute at all. Alternatively, we tried
to use arguments to improve logistic regression with PILAR. Starting with argu-
menting first 10 problematic cases did not practically change the accuracy of logistic
regression. Even, after 20 arguments, the accuracy was almost still unchanged: clas-
sification accuracy increased to 0.73, AUC increases to 0.81, while the Brier score
increased to 0.35. We were unable to improve logistic regression without knowledge
of the domain.

However, the last part of this experiment is not necessarily only a negative re-
sult. It should be noted that, while the accuracy of the hypothesis stayed the same,
its structure changed a lot to reflect the arguments that were provided to examples.
This could be useful especially in medicine, where experts often prefer models that
correspond to their knowledge, even if they are less accurate. For example, in one of
our past applications (not related to argument based machine learning) [ADZ+07],
the main medical expert Noriaki Aoki clearly preferred the model induced by naive
Bayesian classifier to the one induced by logistic regression, although logistic regres-
sion was significantly better, since he could better understand the former one.

122

Chapter 10

Arguments Implying New Attributes

An argument in rule learning was defined as a conclusion and a conjunction of rea-
sons, where each reason mentions some property of the example. Initially, the prop-
erty of the example corresponded to its attribute value, however in some of our ex-
periments this interpretation was not sufficient. It can happen in two possible cases:

• A reason is a combination of several attributes, where combination is not a
conjunction of these attributes. In these cases, we will construct a new attribute
from the already existent and add it to the domain.

• A reason can mention a property that is not yet described with the current
attribute set. In such cases, we need to add a new attribute to the domain and
obtain values of the new attribute for all learning examples.

10.1 Japanese credit screening database

Japanese Credit Screening Database contains 125 persons applying for credit de-
scribed with 10 attributes. The class attribute is whether a person did get the credit or
not. This domain definition also contains imperfect prior knowledge (accuracy 83%
on the examples) - it was generated by talking to individuals at a Japanese company
that grants credit. This prior knowledge will be used in our experiment as a substi-
tute for the domain expert. We will assume that this ”expert” cannot give a complete
definition of the target concept, but can only give arguments for certain examples.
Again, data was split to a learn set (70%) and test set (30%).

123

10. ARGUMENTS IMPLYING NEW ATTRIBUTES

Figure 10.1: Rules induced by CN2 on Credit Screening Database.

IF problem region=yes AND monthly payment<= 9 THEN credit=no
IF jobless=yes AND money bank<= 50 AND monthly payment> 2.0 THEN
credit=no
IF item=bike AND money bank<= 10 THEN credit=no

Figure 10.2: Rules induced by ABCN2. Five examples were argumented in the
learning set.

IF problem region=yes AND years work<= 10 THEN credit=no
IF jobless=yes AND sex=male THEN credit=no
IF sex=female AND jobless=yes AND enough money=no THEN credit=no
IF age>59 AND years working<3 THEN credit=no
IF jobless=yes AND sex=female AND married=no THEN credit=no
IF enough money=no AND age<=19 THEN credit approved=no
IF item=bike AND sex=female THEN credit=no

CN2 induced three rules shown in Figure 10.1 for not receiving credit that achieved
84% accuracy on the learning set and 76% accuracy on the test set. We proceeded
with our standard procedure of finding problematic examples and getting arguments
from our “expert”. Figure 10.2 shows rules obtained after 5 iterations, when re-
maining problematic examples could not be argumented any more. In one of the
arguments, a reason specified unability to pay the credit from the current assets. The
argument was:

Credit=no because money bank < monthly payment × num of payments . . .

The first reason in the argument contains multiplication and a comparison between
several attribute value, both types of conditions that can not be captured by a rule
induced with CN2. We had to add a new attribute enough money that equals no if the
above condition is satisfied and yes otherwise. The accuracy of these rules on learning
set is 85% and is comparable to one achieved with CN2 without arguments. However,
on the test set ABCN2 achieved 89% accuracy, which is a significant improvement
over CN2’s 76% achieved without arguments.

This experiment indicated several points of interest regarding the reconstruction
of expert’s prior knowledge. Six of the seven final induced rules correspond precisely

124

10.2. ZEUS credit assignment problem

to complete background knowledge given by experts. This was achieved by asking
our “expert” to explain only five examples, which indicates the effectiveness of the
ABML refinement loop. This also indicates how effective ABML is as a tool for
extracting expert’s informal background knowledge. Imagine that we did not have
experts’ prior knowledge already formalized, and that we wanted to extract it from the
expert. The way to do this with interactive use of ABCN2, is to generate questions
for the expert by identifying critical examples. Expert’s explanations in terms of
arguments of the five critical cases would, in our example, be sufficient to completely
formalize the expert’s prior intuitions.

This experiment also nicely illustrates the difference between induced rules re-
sulting from data only, and actual causal rules that generated the data. Both hypothe-
ses, with and without arguments, have a similar accuracy on the learning set, but to
a domain expert the first set of rules would be difficult to understand as they show
unfamiliar dependencies. Moreover, the first set of rules scored significantly lower
accuracy on the test set, meaning that the first hypothesis merely reflected a spurious
relation in the learning set.

10.2 ZEUS credit assignment problem

A similar learning problem to the one above - learning about credit status - occurred
within European the 6th framework project ASPIC∗. Learning about credit status is a
part of a larger business-to-business scenario used in ASPIC as the main large-scale
demonstration application for argument-based methods. In that experiment we also
showed how ABCN2 can be used to improve existing knowledge bases in argumen-
tation based expert systems.

The main problem of the scenario is to determine whether client should be granted
credit for a purchase. This is determined by the system through a set of if-then
business rules. A part of them is used to determine whether the applicant credit
status is “good”, “bad”, “average”, or “unavailable”. In the initial knowledge base
(given by experts), the following three rules were used for classification:

Credit History = Good If all past debts were paid before or on the date due.

Credit History = Average If equal or less number of past debts were paid in less
than a week late, to the ones paid on time.

∗Argument Service Platform with Integrated Components (ASPIC),
http://www.argumentation.org/

125

10. ARGUMENTS IMPLYING NEW ATTRIBUTES

Credit History = Bad If more debts paid after the deadline than the ones paid on
time.

Along to classification rules, ZEUS also provided a data set of 5000 companies
described with 18 attributes (four of them actually relevant for credit history). We
began the experiment with the induction of rules from 2500 examples (learning set)
without considering given classification rules. The system learned a set of 40 rules.
As there was a lot of data available, the method was able to correctly classify 95% of
examples in test set (the remaining 2500 examples) which is a quite good result with
respect to classification accuracy.

In the next step we ran the algorithm for finding problematic example. It was a
company that had “bad” credit status as a class value. We looked up the values of this
example and noticed that third rule from experts apply. This company did historically
pay more often late than on time (attributes past debts after date, past debts on time,
past debts before time). The argument for bad is thus:

Credit History = Bad because past debts after date >
> past debts on time + past debts before time

The problem with given argument that it is not consistent with the format of if-
then rules learned by CN2. The condition part of a rule is a conjunction of several
attribute-value pairs, whereas our condition contains comparison of three attribute
values and also a sum of two of them. We solved this problem by constructing an-
other boolean attribute that has value 1 when the above condition is true and 0 when
it is not. We named it “latePayer” and the argument thus changed to:

Credit History = Bad because latePayer = 1

With the additional argument and the same 2500 learning examples, ABCN2
learned only 27 rules. Due to the argument and the new attribute the number of rules
for classes “bad” and “average” dropped significantly. At the same time classification
accuracy measured on test data was slightly improved to 97%.

In the next pass we repeated the search for problematic example, this time it was
from class “Credit history”=“good”. The argument from initial knowledge base was
therefore:

Credit History = Good because past debts after date < 1

126

10.3. Construction of sophisticated chess concepts

We relearned rules from learn set and the two given arguments and ABCN2 in-
duced only six rules, while classification accuracy of these rules on test set increased
to 99.9%. This is a significant improvement in terms of classification accuracy, but
even more spectacular is the improvement in terms of the complexity of the induced
theories, from the initial 40 rules to 6 only. The improvement after the first argument
is expectable, as CN2 is incapable to learning a rule of that format. However, the
improvement after the second argument is surprising, as there should be no reason
why a rule learner could not find this condition automatically. The problem is the
myopical property of rule learning evaluation functions. These add one condition at
a time, however the debts after date < 1 by itself does not increase the probability
of class good. The condition becomes good only after adding another condition.

10.3 Construction of sophisticated chess concepts

In this case study, we demonstrate the use of argument based machine learning for
knowledge acquisition of a sophisticated chess concept [MGK+08]. Knowledge ac-
quisition is still one of the most difficult tasks of artificial intelligence [Fei84]. The
problem was addressed in various ways [Boo89; Chk03; Coo94], proposing assorted
cognitive techniques like interviews, observations, analogy, etc. to elicit as much
knowledge from experts as possible. Nevertheless, the problem still remains largely
unsolved [Fei03]. Machine learning has long ago been proposed as an alternative way
of addressing this problem [FR86; For86]. While it was shown that it can be success-
ful in building knowledge bases [LS95], the major problem with this approach is that
automatically induced models rarely conform to the way an expert wants the knowl-
edge organised and expressed. Models that are incomprehensible have less chance to
be trusted by experts and users alike. In striving for better accuracy, modern trends in
machine learning (e.g. support vector machines) do not seem to be doing anything to
alleviate this problem. A common view is that a combination of a domain expert and
machine learning would yield the best results [WWZ99]. And this is where ABML
comes into place.

For the particular chess concept, we considered the elicitation of the well-known
chess concept of bad bishop. This concept is used in a chess tutoring application
developed by Sadikov et al. [SMG+06]. The idea is to improve the chess playing
programs with an understanding of static positions. While todays chess playing pro-
grams are extremely good at playing chess, their use for commenting or tutoring is

127

10. ARGUMENTS IMPLYING NEW ATTRIBUTES

rather limited. Such programs evaluate chess positions numerically, but are then not
able to explain a numerical evaluation in terms of concepts that human chess players
use when they reason about the position. For example, the program may say that
the current positions value is 1.70 in favor of White. Now the beginner chess player
would ask “Why”? An answer, which is beyond today’s chess programs, might be:
“Because Black has a bad bishop.”

10.3.1 Experiment

Watson [Wat99] gives the following definition of a bad bishop as traditional: a bishop
that is on the same colour of squares as its own pawns is bad, since its mobility is
restricted by its own pawns and it does not defend the squares in front of these pawns.
Moreover, he puts forward that centralisation of these pawns is the main factor in
deciding whether the bishop is bad or not.

In the experiments, the dataset for learning consisted of 200 middlegame posi-
tions from real chess games where the black player has only one bishop†. These
bishops were then a subject of evaluation by the experts‡. In 78 cases, the bishops
were assessed as bad. Each position had also been statically evaluated (i.e. without
applying any search) by the evaluation function of the well-known open source chess
program CRAFTY, and its positional feature values§ served as attribute values for
learning. We randomly selected 100 positions for learning and 100 for testing (strat-
ification was used, preserving the proportion of positive and negative examples).

In the first iteration of the previously mentioned process, only CRAFTY’s posi-
tional features were used and no arguments have been given yet. ABCN2 induced
all together 4 rules achieving 72% classification accuracy on the test set. Figure 10.3
shows the first critical example, automatically selected by our algorithm.

The initial rules failed to classify this example as “not bad”, as was previously
judged by the experts. The following question was given to the experts: “Why is
the black bishop not bad?” It turned out that the concept mentioned by the experts
(see the caption in Figure 10.3) was not yet present in the domain attributes - the
only CRAFTY’s positional feature that could potentially describe bishop’s mobility,
BLACK BISHOPS MOBILITY, expresses the number of squares that the bishop at-

†The learning data set and a detailed explanation of domain’s attributes can be found at:
http://www.ailab.si/matej/.

‡The chess expertise was provided by woman grandmaster Jana Krivec and FIDE master Matej
Guid.

§CRAFTY’s evaluation function uses about 100 positional features.

128

10.3. Construction of sophisticated chess concepts

Figure 10.3: Why is the black bishop not bad? The experts used their domain knowl-
edge to produce the following answer: “The black bishop is not bad, since its mobility
is not seriously restricted by the pawns of both players.”

tacks, but doing so takes into account all pieces (not only pawns) that block the
bishop’s diagonals, restricting its mobility. A new attribute,
IMPROVED BISHOP MOBILITY, was therefore programmed and included into the
domain. It is the number of squares accessible to the bishop, taking into account only
own and opponent’s pawn structure. Based on the experts’ explanation, the argument
“IMPROVED BISHOP MOBILITY is high” was added to this example.

Taking only the bishop’s mobility into account turned out not to be enough for
ABCN2 to determine the goodness of the bishop. Also, the method, which at the
time only had CRAFTY’s attributes and the newly included attribute at its disposal,
failed to find additional restrictions to improve the experts’ argument. To solve this
problem, we used the idea of counter examples presented in Chapter 8. The method
found a counter example shown in Figure 10.4. This example is classified as “bad”,
although the value of the attribute IMPROVED BISHOP MOBILITY is high.

The experts were now asked to compare the black bishops in the two examples:
“Why is the black bishop in Figure 10.4 bad, and the bishop in Figure 10.3 is not?”
Again, the experts have been asked to give a description based on their knowledge in
the presented domain. Based on this description (given in Figure 10.4), another at-
tribute, BAD PAWNS, was included into the domain. This attribute evaluates pawns
that are on the colour of the square of the bishop (“bad” pawns in this sense). With
some help of the experts, a look-up table with predefined values for the pawns that are
on the same colour of squares as the bishop was designed in order to assign weights
to such pawns. According to the previously mentioned Watson’s definition, central-
isation of the pawns was taken into account. The argument given to the example
shown in Figure 10.3 was then extended to “IMPROVED BISHOP MOBILITY is

129

10. ARGUMENTS IMPLYING NEW ATTRIBUTES

Figure 10.4: Why is the black bishop bad, comparing to the one in Figure 10.3? The
experts’ explanation was: “The important difference between the two examples is the
following: in the example in Figure 10.4 there are more pawns on the same colour
of squares as the black bishop, and some of these pawns occupy the central squares,
which further restricts the bishop’s possibilities for taking an active part in the game.”

high AND BAD PAWNS is low,” and with this argument the method could not find
any counter examples any more. The new rule covering the critical example is:

if IMPROVED BISHOP MOBILITY≥4 and BAD PAWNS≤32
then BISHOP=NOT BAD; class distribution [0,39]

The above rule evidently uses given argument in its condition. The method opera-
tionalised the first condition of the argument as IMPROVED BISHOP MOBILITY≥4
(≥4 stands for high here), while in the second it decided that the value of 32 is critical
for attribute BAD PAWNS to distinguish a bad and a not bad bishop. The rule covers
39 learning examples (out of 100) and all of them are from class NOT BAD, which
suggests that the rule is good indeed.

The arguments can consist of both newly included attributes and/or existing ones.
During the process, after they were given another critical example selected by the
method, the experts expressed the following commentary: “The bishop is not bad,
since the pawns that are on the same square colour are not sufficiently blocked by
opponent’s pawns and pieces.” Their domain knowledge was again translated into
domain description language - attribute BLOCKED BAD PAWNS was added to the
domain. As in the previous example, the method selected the position shown in Fig-
ure 10.4 as the most appropriate counter example. The “bad” black pawns in this po-
sition are also not blocked by opponent’s pawns and pieces, but the bishop is regarded
as bad anyway. The experts’ explanation of the crucial difference between the two
examples was the same as above in this case. The existing attribute BAD PAWNS

130

10.3. Construction of sophisticated chess concepts

was therefore used to improve the argument to “BLOCKED BAD PAWNS is low
AND BAD PAWNS is low”. The method was in this case able to induce the rest of
the rule:

if BLOCKED BAD PAWNS≤3
and BAD PAWNS≤26
and IMPROVED BISHOP MOBILITY>1
then BISHOP=NOT BAD; class distribution [0,19]

Figure 10.5: Why is the black bishop bad? The following commentary was given:
“The black bishop is bad, since both of its diagonals are blocked by its own pawns.”

The ABML-based knowledge-elicitation process was used to induce rules to de-
termine both good (i.e. not bad) and bad bishops. The automatically selected critical
example shown in Figure 10.5 represents an example with other class value than
the previous ones. The experts were in this case asked to describe why the black
bishop is bad. Based on their answer (see Figure 10.5), another attribute was in-
troduced into the domain: BLACK PAWN BLOCKS BISHOP DIAGONAL, which
takes into account own pawns that block the bishop’s diagonals. The argument
“BLACK PAWN BLOCKS BISHOP DIAGONAL is high” was added to the exam-
ple, however a counter example presented in Figure 10.6 was found by the method
and was shown to the experts. The question was: “Why is the bishop in Figure 10.6
not bad, and the bishop in Figure 10.5 bad?”

In this case, the experts were unable to express the crucial differences between
the selected examples regarding the goodness of the bishop in a way that would en-
able to translate her description into domain description language. The description
(see Figure 10.6), although completely relevant in the given position, is practically
impossible to convert into appropriate attributes, since it would require several very

131

10. ARGUMENTS IMPLYING NEW ATTRIBUTES

Figure 10.6: Why is the bishop not bad, comparing to the bishop in Figure 10.5? The
experts: “The black bishop is not bad, since together with the black queen it repre-
sents potentially dangerous attacking force that might create serious threats against
the opponent’s king.”

sophisticated attributes to describe the dynamic factors expressed in the experts’ com-
mentary. In such a case (i.e. when the expert is unable to provide an argument that
could be translated into domain description language), the ABML method searches
for another counter example (if available). In this case, the example in Figure 10.7
was given to the experts as a counter example to the one in Figure 10.5.

Figure 10.7: Why is the bishop not bad, comparing to the bishop in Figure 10.5? The
experts described the difference: “The black bishop is not bad, since its mobility is
not seriously restricted, taking the pawn structure into account.”

Based on the experts’ commentary (see Figure 10.7), the existing attribute IM-
PROVED BISHOP MOBILITY was used to improve the argument to:

“BLACK PAWN BLOCKS BISHOP DIAGONAL is high AND
IMPROVED BISHOP MOBILITY is low.

The following rule, explaining this critical example, can be found in the new set
of induced rules:

132

10.3. Construction of sophisticated chess concepts

0 1 2 3 4 5 6 7 8

Iterations

0.7

0.8

0.9

1.0

CA

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...............
....................................

....................
..........
..........
..........
..........
..........
..........
..

...................
...................

...................
.

∗
∗
∗
∗
∗
∗
∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

.............
.............
.............
.............
.............
.............

.............
......

...
...
...
...
.............

....
...

Figure 10.8: Progress of classification accuracies (CA) through iterations for ABCN2
(solid line), logistic regression (stars ∗), C4.5 (dashed line) and classic CN2 (dots).

if BLACK PAWN BLOCKS BISHOP DIAGONAL≥20
and IMPROVED BISHOP MOBILITY≤3
then BISHOP=BAD; class distribution [18,0]

In total, there were eight critical examples presented to the experts The final
model scored 95% accuracy on the test set.

10.3.2 Discussion

The ABML-based knowledge-elicitation process presented in our case study con-
sisted of eight (8) iterations. During the process, seven (7) arguments were attached
to automatically selected critical examples, and five (5) new attributes were sug-
gested by arguments and therefore included into the domain. This experiment also
demonstrated the use of counter-examples; in some of the iterations, initially given
arguments were not enough for ABCN2 to induce a good rule, therefore experts had
to revise their arguments using counter-examples. After each iteration, the obtained
rules were evaluated on the test dataset. The improvement of the model is evident:
from the initial 72% classification accuracy (Brier score 0.39, AUC 0.80), the final
95% accuracy (Brier score 0.11, AUC 0.97) was achieved after the end of the process.

The question is, whether these improvements were mainly due to the addition of
new attributes or were the arguments also just important? The Figure 10.8 shows that
the arguments also mattered significantly. We compared the progressions of clas-

133

10. ARGUMENTS IMPLYING NEW ATTRIBUTES

sification accuracies of ABCN2 with some other (“non-ABML” - using only newly
added attributes) machine learning algorithms, namely logistic regression, decision
trees (C4.5), and the classic CN2. The accuracies of all methods improved during the
process, however ABCN2 (which also used the arguments given by the experts) out-
performed all the others. The obtained results suggest that the performance of other
algorithms could also be improved by adding appropriate new attributes. However,
using arguments is likely to lead to even more accurate models.

The main advantage of ABML over classical machine learning is the ability to
take advantage of expert’s prior knowledge in the induction procedure. This leads
to hypotheses comprehensible to experts, as it explains learning examples using the
same arguments as the expert did. In our case study this was confirmed by chess
experts. According to them, the final set of rules are more alike to their understanding
of the bad bishop concept than the initial rules were. Furthermore, the final rules were
also recognised to be in accordance with the traditional definition of a bad bishop.

Our domain experts clearly preferred the ABML approach to manual knowledge
acquisition. The formalisation of the concept of bad bishop turned out to be beyond
the practical ability of our chess experts (a master and a woman grandmaster). After
trying to manual define this concept, their rules achieved 56% accuracy on the test
set. They described the process as time consuming and hard, mainly because it is
difficult to consider all relevant elements. ABML facilitates knowledge acquisition
by fighting these problems directly. Experts do not need to consider all possibly rel-
evant elements, but only elements relevant for a specific case, which is much easier.
Moreover, by selecting only critical examples, the time of experts involvement is
decreased, making the whole process much less time consuming.

134

Chapter 11

Automatically Extracted Arguments
from Text

In ABML applications, arguments are usually provided by domain experts. In this
chapter, we will demonstrate a possible way of extracting arguments from text and
using them in ABML. The work was done as a part of the X-Media∗ project, which is
an European project that addresses the issue of cross-media knowledge management
in complex distributed environments.

11.1 Extracting arguments from text

The extraction of arguments from text is based on relation extraction from text. Rela-
tion extraction is an important task in natural language processing, with many prac-
tical applications such as question answering, ontology population, and information
retrieval. It requires the analysis of textual documents, with the aim of recogniz-
ing particular types of relations between named entities, nominals, and pronouns.
Reliably extracting relations in natural-language documents is still a laborious and
unsolved problem. Traditionally, relation extraction systems have been trained to
recognize relations between names of people, organizations, locations, and proteins.
In the last two decades, several evaluation campaigns such as MUC [MUC], ACE
[ACE], SemEval [sem] have helped to understand and properly formalize the prob-
lem, and provide comparative benchmarks.

We are interested in finding semantic relations between class values and descrip-
tive attributes (taken from data), and using them as arguments. For example, taking

∗http://www.x-media-project.org/

135

11. AUTOMATICALLY EXTRACTED ARGUMENTS FROM TEXT

the ZOO domain from Chapter 8, given the class value reptile and the attribute eggs
we are interested in relations such as “Most reptiles lay eggs” and “Reptiles hatch
eggs.” Specifically, the relationships that exist between classes and attributes are ex-
tracted from the whole English Wikipedia,† an online encyclopedia written collabo-
ratively by volunteers, that has grown to become one of the largest online repositories
of encyclopedic knowledge, with millions of articles available for a large number of
languages.

To extract such relations from textual documents, we have to deal with two major
problems. The first concerns the lack of information on the relation type we are
seeking. In relation extraction, we usually know in advance the type of the relations
to be extracted, here we only know class values and attributes, namely the conclusion
and reasons of a possible relation. Thus, the task is restricted to discover whether or
not a relation exists between class and an attribute.

The second problem is related with the lexicalization of the class values and at-
tribute descriptions. The names of attributes and classes should be meaningful, or,
in other words, should be similar to those used in texts. Using their background
knowledge, humans can naturally interpret the concepts expressed by class values
and attributes, however, due to the variability of natural language, it can be very
difficult to find occurrences of the lexicalizations of such concepts in the same sen-
tence and, consequently, to determine whether or not a relation exists. To address the
first problem, we do not try to find specific assertions of relations in text, but rather
we exploit the simple idea that if many different sentences reference both the class
value and attribute, then the class value and attribute are likely to be related. On the
other hand, to deal with the variability of natural language, we generated alterna-
tive lexical variants using a WordNet [Fel98], a lexical database containing semantic
relations among words. Specifically, we generated variants for all class values and at-
tributes using the following semantic relations in WordNet: synonyms (e.g., breathe
→ respire) and morphological derivations (e.g., predator→ predators).

As most relation extraction systems [HSG04; BM05; GLR07], we identify rela-
tions mentioned in text documents considering only those pairs that are mentioned
in the same sentence. Let c1, . . . , ck be class values in data and a1, . . . , an attributes.
Then, the number of relations #r(ci, aj) is defined as the number of sentences across
the whole English Wikipedia, where the class ci and the attribute aj co-occur.

We shall now define the construction of an argument given the number of relations

†http://en.wikipedia.org

136

http://en.wikipedia.org

11.2. Case study: animal classification

between class and attribute values. An argument is a conjunction of a set of reasons,
where each reason is related to a single attribute in the domain. To determine whether
and attribute aj is a possible reason for class ci, we first evaluate whether #r(ci, aj)
is statistically different from the expected value E(#r(ci, aj)), namely if the number
could be obtained purely by chance. A possible method for this task is the standard
χ2 test for 2× 2 matrices.

When #r(ci, aj) is statistically different from E(#r(ci, aj)), it can be either
higher or lower. If #r(ci, aj) > E(#r(ci, aj)), then we say that aj is a positive
reason for ci. Such a positive argument can be given to an example if it is from class
ci and the value of aj is “positive”. The positiveness of attribute values must be de-
fined prior to learning and it intends to distinguish between values that should occur
more frequently in the class-attribute relations in text than it is expected. Although,
it is impossible to say which of the values will have this property, we believe that
a good heuristics to select positive attribute values is to select those that ascribe the
presence of a property described by aj to the example. For instance, if an animal has
the value of attribute breathes 1, this value states that the animal is breathing (pres-
ence of this property), and the value of attribute is positive. If the number of found
relations is less than expected, i.e. #r(ci, aj) < E(#r(ci, aj)), then we can use such
reason only if the example has negative value of aj .

An argument for a certain example is thus constructed from all positive and nega-
tive reasons consistent with the values of this example. Sometimes, such an argument
will be overly specific. To alleviate this problem all arguments are pruned with REP
(reduced error pruning) [Fur97] principle before they are appended to the example.

11.2 Case study: animal classification

The approach will be illustrated and evaluated on the domain ZOO, the same one as
used in the first section of Chapter 8. We began the experiment by learning rules with
ABCN2 without any arguments extracted from text. Learning and testing on the full
data set accounted for 100% classification accuracy. Induced rules were:

• IF milk=yes THEN type=mammal

• IF feathers=yes THEN type=bird

• IF eggs=yes AND fins=yes THEN type=fish

137

11. AUTOMATICALLY EXTRACTED ARGUMENTS FROM TEXT

• IF aquatic=no AND legs=6 THEN type=insect

• IF feathers=no AND eggs=yes AND backbone=yes AND aquatic=no THEN
type=reptile

• IF milk=no AND domestic=no AND hair=no AND tail=yes AND fins=no
AND legs=0 THEN type=reptile

• IF toothed=yes AND legs=4 AND eggs=yes AND aquatic=yes
THEN type=amphibian

• IF feathers=no AND hair=no AND airborne=no AND backbone=no AND preda-
tor=yes THEN type=other

• IF fins=no AND backbone=no AND legs=no THEN type=other

Afterwards, we sought through Wikipedia for relations between class values (e.g.,
mammal) and positive attribute values (e.g., milk=yes). Table 11.1 shows the alterna-
tive lexical variants for some attributes generated using WordNet and morphological
derivations. In this search we omitted to use class other, since it does not represent
any actual animal class. Table 11.2 shows number of all relations found for the ZOO
domain. For example, we found a strong correlation between the class bird and the
attribute feather, merely expanding the attribute with the lexical variants feathers and
plumage. On the other hand, despite the fact that it is intuitive for humans to answer
the question if a reptile has approximately the same size of a cat, it is almost impossi-
ble to find occurrences of the class reptile and the attribute “catsize” in the same text,
due to the erroneous lexicalization of this attribute introduced for comparing animals
by size. The last row of Table 11.2 show that the attribute catsize gets scores of zero
for all classes.

The absolute values #r(ci, aj) are not strongly related to the correlation between
class ci and attribute aj . For instance, it seems that aquatic is the most important
feature of amphibians. But, is it really, as being aquatic is common for all classes?
On the other hand, the text extraction tool found only 6 relations between amphibians
and breathing. However, there is still a strong positive relation between them, due to
a much lesser presence of the concept breathing and animal type amphibian in text
when compared to other attributes and animals.

For this reason, we applied the standard χ2 (sig = 0.05) test to determine whether
#r(ci, aj) is statistically different from E(#r(ci, aj)) (any appropriate statistical test
could be applied here). Table 11.3 shows results of χ2 test, where:

138

11.2. Case study: animal classification

Table 11.1: The alternative lexical variants for attributes generated using WordNet
and morphological derivations.

attribute alternative lexical variants
hair hairs, fur, furs
feather feathers, plumage
egg eggs, spawn, spawns
milk milking
airborne winged
...
domestic domesticated, pet
catsize -

Table 11.2: Number of positive relations #r(ci, aj) between animal classes and at-
tributes found in Wikipedia.

amphibian reptile insect mammal bird fish
hair 1 16 70 187 106 87

feathers 0 14 17 15 894 31
eggs 34 117 339 174 894 645
milk 2 2 10 67 25 120

airborne 2 15 117 15 196 21
aquatic 81 184 271 1008 284 1072

predator 5 16 123 95 285 217
toothed 10 59 54 150 102 250

backbone 0 1 3 11 7 51
breathes 6 3 8 11 16 45

venomous 6 43 39 44 41 47
fins 4 4 3 17 21 529
legs 27 42 206 51 364 111
tail 16 26 53 57 504 279

domestic 9 40 31 81 317 166
catsize 0 0 0 0 0 0

value 0 means that the relation is not significant;

value 1 denotes positive reasons, and

value -1 denotes negative reasons.

Table 11.3 shows which of the attributes can be used as arguments for every class.
For example, in the case of amphibians, we can use attributes aquatic, breathes, and
legs as reasons in the argument, if the values of the corresponding case are positive

139

11. AUTOMATICALLY EXTRACTED ARGUMENTS FROM TEXT

Table 11.3: Positive (1) and Negative (−1) reasons. Relations with value 0 are not
significantly different from the expected value and cannot be used as reasons in ar-
guments.

amphibian reptile insect mammal bird fish
hair -1 0 1 1 -1 -1

feathers -1 -1 -1 -1 1 -1
eggs 0 0 1 -1 1 -1
milk 0 -1 -1 1 -1 1

airborne 0 0 1 -1 1 -1
aquatic 1 1 -1 1 -1 1

predator -1 -1 1 -1 1 0
toothed 0 1 -1 1 -1 1

backbone 0 0 0 0 -1 1
breathes 1 0 0 0 -1 1

venomous 0 1 1 0 -1 -1
fins 0 -1 -1 -1 -1 1
legs 1 0 1 -1 1 -1
tail 0 -1 -1 -1 1 0

domestic 0 0 -1 -1 1 -1
catsize 0 0 0 0 0 0

(“yes” or > 0 for legs). Similarly, attributes hair, feathers, predator can be used as
reasons when attribute values are negative (“no” or = 0 for legs).

After augmenting all examples with arguments, the rules for mammals, birds,
fishes, insects, and other stayed the same. The rules for reptiles changed with the use
of arguments:

• IF toothed=yes AND milk=no AND fins=no AND legs=0 THEN type=reptile

• IF feathers=no AND milk=no AND fins=no AND breathes=yes AND back-
bone=yes AND aquatic=no
THEN type=reptile

The rules are similar to the ones above with some differences. Specifically, the sec-
ond rule in the original set mentions domestic=no as a condition for a reptile, al-
though there are many reptiles used as pets (e.g., turtles, snakes, etc.). It might
be easier to understand the how these rules were obtained, if we look at a par-
ticular argument given to an animal. All possible reasons for reptiles are: feath-
ers=no, milk=no, aquatic=yes, predator=no, toothed=yes, venomous=yes, fins=no,
and tail=no. When the method gives an argument to a particular example, e.g.

140

11.2. Case study: animal classification

pitviper, it uses only reasons that are true for this example. In the case of pitviper, the
relevant reasons would thus be: feathers=no, milk=no, toothed=yes, venomous=yes,
and fins=no. The complete argument is:

Pitviper is a reptile, because feathers=no and milk=no and toothed=yes and
venomous=yes and fins=no.

Afterwards, to remove the unnecessary conditions, the reduced error pruning mech-
anism is applied and the resulting argument is:

Pitviper is a reptile, because milk=no and toothed=yes and fins=no.

The first rule for reptiles used this arguments as the basis and added a condition
legs=0 to finalise the induction of the rule.

The rule for amphibians changed to:

• IF legs=4 AND breathes=yes AND aquatic=yes AND hair=no THEN type=amphibian.

The original and the new rule are again very alike. In the latter attributes toothed and
eggs were replaced with breathes and hair. From a point of an expert, the second
rule is better, since it is not entirely true that amphibians do not have teeth. Most am-
phibian larvae have tiny teeth. Nevertheless, although most adult amphibians retain
their teeth, teeth can be reduced in size or not present at all.

We evaluated the method with 10-times repeated 10-fold cross-validation to avoid
effects of randomness of one split only. In each iteration, all examples in the learn
set were argumented, then a model was built from these and evaluated on the test
set. Using ABCN2 without arguments resulted in 94.51% classification accuracy,
while ABCN2 with arguments scored, on average, 96.75% classification accuracy.
As a comparison, some standard machine learning methods (as implemented in Or-
ange [DZ04]) scored 90% (SVM), 92.57% (C4.5) and 92.6% (naı̈ve Bayes). The
scores differ from those in Chapter 8, since another type of evaluation was used.

141

Chapter 12

Can Imperfect Arguments be
Damaging?

It may well happen that the expert, when argumenting examples, will make mistakes
and supply imperfect arguments. We now turn to the question, how critically ABCN2
depends on the quality of arguments?

Theories learned by ABCN2 have to be consistent with the given arguments. In
the case of imperfect arguments, this may be a problem, as the resulting theories will
reflect these imperfections, and possibly have lower accuracy than learning without
arguments at all. In this chapter, we will give an experimental evidence that, in
general, this problem is unlikely to cause much damage.

We start with the expectation that accuracy of theories learned from examples
and arguments given by experts is higher than accuracy of hypotheses learned from
examples and random arguments. Experts, obviously, have better knowledge of the
domain than simple guessing, and so the given experts’ arguments will be better
than random arguments. Consequently, the induced hypotheses will be, on average,
more accurate. The effect will be detrimental only if the expert exploits his or her
knowledge to maliciously hinder learning by intentionally giving extremely bad, false
arguments. In the following we will not consider such extremely unnatural situations,
but investigate whether completely uninformative, random arguments will damage
the performance in comparison with no arguments at all.

We made an experiment, using 25 UCI data sets [AN07], comparing CN2 with
ABCN2 using 2, 5, 10, or 20 randomly argumented examples. Each argumented
example can have up to five random positive arguments, and each argument can
have up to five random reasons.

143

12. CAN IMPERFECT ARGUMENTS BE DAMAGING?

Table 12.1: Classification accuracy and AUC of ABCN2 on several UCI data sets
with different number of randomly argumented examples.

CA AUC
Dataset↓ #rand.arg.→ 0 2 5 10 20 0 2 5 10 20
adult 0.805 0.805 0.806 0.806 0.807 0.880 0.881 0.880 0.880 0.881
australian 0.871 0.868 0.864 0.872 0.859 0.924 0.925 0.925 0.925 0.927
balance 0.833 0.833 0.832 0.830 0.830 0.820 0.823 0.816 0.820 0.819
breast (lju) 0.720 0.720 0.717 0.717 0.724 0.717 0.719 0.723 0.720 0.702
breast (wsc) 0.940 0.941 0.940 0.941 0.942 0.987 0.989 0.989 0.989 0.990
car 0.771 0.767 0.774 0.778 0.773 0.916 0.915 0.922 0.924 0.921
credit 0.858 0.858 0.861 0.864 0.861 0.910 0.911 0.916 0.911 0.917
german 0.708 0.709 0.708 0.710 0.710 0.749 0.746 0.750 0.755 0.755
hayes-roth 0.832 0.824 0.825 0.810 0.817 0.959 0.959 0.944 0.958 0.949
hepatitis 0.814 0.820 0.820 0.801 0.807 0.853 0.830 0.819 0.855 0.810
ionosphere 0.926 0.926 0.929 0.920 0.906 0.954 0.954 0.952 0.954 0.952
iris 0.927 0.927 0.927 0.933 0.927 0.979 0.979 0.979 0.981 0.981
lymphography 0.824 0.824 0.824 0.830 0.844 0.930 0.931 0.928 0.924 0.931
monks-1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
monks-2 0.657 0.657 0.657 0.646 0.666 0.740 0.735 0.747 0.699 0.738
monks-3 0.989 0.989 0.989 0.989 0.989 0.991 0.991 0.988 0.990 0.989
mushroom 1.000 0.999 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000
pima 0.751 0.751 0.749 0.745 0.749 0.835 0.836 0.835 0.833 0.832
SAHeart 0.673 0.675 0.680 0.677 0.682 0.748 0.746 0.752 0.754 0.753
shuttle 0.937 0.937 0.933 0.941 0.937 0.997 0.997 0.998 0.995 0.996
tic-tac-toe 0.993 0.994 0.993 0.993 0.994 0.998 0.999 0.998 0.998 0.998
titanic 0.787 0.787 0.785 0.786 0.787 0.741 0.741 0.742 0.742 0.742
voting 0.945 0.942 0.945 0.945 0.949 0.983 0.983 0.986 0.979 0.979
wine 0.948 0.959 0.960 0.960 0.938 0.999 0.999 0.999 0.999 0.999
zoo 0.961 0.961 0.961 0.951 0.941 0.998 0.998 0.995 0.998 0.998
Avg. rank 2.88 2.90 3.02 2.90 3.3 2.94 3.12 2.88 3.00 3.06
Wilcoxon (p) [0 vs. x] NA 0.47 0.45 0.47 0.37 NA 0.31 0.37 0.34 0.48

The results are shown in Table 12.1. There were almost no visible differences
in the performance of induced theories between learning from randomly argumented
examples and no arguments at all. Also, when using Wilcoxon T-test, neither of
the methods (using different number of random arguments) could be proved to be
statistically worse than CN2. Finally, comparing their ranks with the Bonferroni-
Dunn post-hoc test [Dem06] visualised in Figures 12.1 and 12.2 as well support our
hypothesis. Therefore, using this result and the natural assumption that expert’s ar-
guments are on average better than random, we conclude that experts’ arguments
cannot significantly worsen the classification accuracy. ABCN2 will under any nor-
mal circumstances either outperform the original CN2, or perform similarly, but it is
unlikely to be inferior to learning without arguments.

144

1 2 3 4 5

0
2
5

10
20

CD

Figure 12.1: A critical difference diagram of classification accuracies of ABCN2
models with different number of random arguments.

1 2 3 4 5

0
5

20
10
2

CD

Figure 12.2: Comparisson of AUC’s of ABCN2 models with different number of
random arguments.

145

147

Chapter 13

Concluding Remarks and Further
Work

Argument Based Machine Learning is a novel approach to machine learning that
draws on some concepts of argumentation theory. Argumentation is used to facilitate
efficient knowledge elicitation from experts. They need to focus on a particular learn-
ing example only and try to articulate the reasons why is this example in the class as
given. Since an argument is not assumed to be completely correct knowledge, it does
not matter whether the expert is confident in his or her answer or not. They could even
just express their opinion or answer by using intuition about the learning example,
and it should still be useful for an ABML method. Furthermore, argumentation can
be also used to determine undefeated (admissible) arguments, when the arguments
attack each other. This usually happens if the example is explained by a number
of experts that disagree with each other. Although we provided formal grounds for
such argumentation, we did not encounter such a case during experimentation, and
therefore this remains subject of future work.

Since the argument knowledge is not objectively correct and is also specific to
the particular example, it needs to be used in a different way than classical prior
knowledge. We say that the induced hypothesis should argument-based derive each
learning example, which means that the hypothesis should mention arguments of the
example in the derivation of the class value of this example. The concept of deriving
is, however, different for each learning principle, as demonstrated in Chapter 4 for
ILP and logistic regression and in Chapter 5 for rule learning.

149

13. CONCLUDING REMARKS AND FURTHER WORK

In Chapter 5, we described the ABCN2 algortihm, an argument-based extension
of CN2, and argumented examples in rule learning. CN2 is a well-known method
for learning rules, but very basic. The question is, if we would achieve even better
results by using another, more sophisticated method, e.g. RIPPER [Coh95], which
uses reduced error pruning to post-prune induced rules? The only definite answer
would give an experiment, however, one needs to consider that CN2 as used in this
Thesis is not the same CN2 as used a decade ago; the extreme value correction of
probability estimates produces probability estimates that are closer to its true values
and PILAR classification assigns each rule a weight of its importance - in a sense, it
is a way to do what post-pruning does.

The PILAR classification technique described in Chapter 7 and extreme value
correction in probability estimates (Chapter 6) are both techniques that substantially
improve the quality of rule learning. However, they come at some computational cost.
In extreme value correction, the required initial determination of the parameters of
the extreme value distribution for the particular learning problem is typically roughly
comparable to the rest of rule learning in ABCN2. In PILAR, after rules have been
induced, an optimisation to find the best parameters is needed. However, we do not
regard the additional time required as a critical problem for ABCN2, since a large
portion of the time sink comes from interaction with experts, while time needed for
learning is negligible.

The argument based refinement loop iteratively selects critical examples that
should be explained by an expert. In this way, experts need to focus on difficult cases
only and leave simple cases to the learning algorithm. At the moment, the algorithm
always suggests the most misclassified example as the most critical one. Although
this criterion is intuitive - ask what you do not know, and shows promising results
in experiments, it is probably not optimal. If the domain contains outliers (examples
with unusual attribute values for given class), these will be presented to experts for
explanation, but experts will unlikely be able to explain them. The question is thus:
is there a way to select critical examples that are not outliers?

The experiments showed several advantages of ABML:

• Expressing expert knowledge in the form of arguments for individual examples
is easier for the expert than providing general theories.

• Critical examples whose arguments are expected to most improve the learning,
are automatically identified by our method.

150

• When expert’s arguments can not be used efficiently, the method provides
counter examples. Experts can thus improve their initial argument by taking
counter examples into account. We noticed that these examples have also im-
proved the expert’s understanding of the learning problem, as they were not
aware of the possible counter examples.

• ABCN2 produces more comprehensible rules than CN2, because it uses expert-
given arguments to constrain learning, thereby suppressing spurious hypothe-
ses.

• In the experiments with a number of test data sets, ABCN2 achieved higher
accuracy (classification accuracy, brier score, AUC) than classical CN2. Al-
though this might not be true for all domains, we can expect that arguments
will, in general, improve accuracy of hypotheses. We showed experimentally
that, on average, imperfect, or even completely random arguments are unlikely
to harm the classification accuracy of ABCN2.

• Accuracy of ABCN2 is in general increased due to two reasons: 1) arguments
imply conditions that should be mentioned within rules and 2) arguments imply
missing attributes for successful description of a domain.

In Chapter 11, we proposed a technique to automatically extract arguments from
Wikipedia and demonstrated it on the animal classification domain. The idea is to
eliminate the reliance on an expert who may not be available. However, a single ex-
periment only raises a question whether it is applicable also to other domains. We
believe that it is. The most promising are domains, where learning examples have al-
ready attached commentaries. In medicine, for instance, doctors usually provide their
explanation of laboratory results. Another example of such a domain are technical
experiments (e.g., efficiency of jet engines), where experts usually explain obtained
results.

According to the results of experiments, we can say that ABCN2 is a successful
tool. However, rule learning is only a paradigm appropriate for some of the learn-
ing problems, while other problems ought to be solved with different approaches.
ABCN2 can be therefore seen as an example of transforming a classical learning tech-
nique into its argument-based counterpart. Although, the main principle of ABML
is simple - using arguments in explanations of examples, we still had to solve many
quite intricate problems.

151

13. CONCLUDING REMARKS AND FURTHER WORK

There are many methods that could be extended to work with argumented exam-
ples. The most challenging issues in the contemporary research of machine learning
are in solving complex domains like understanding of free text or analysis of graphs
and long sequences. We believe that in such problems argument-based approach
could be even more beneficial. For example, in the case of understanding a sentence,
it is difficult for an expert to provide general guidelines how to interpret sentences,
but explaining the meaning of a single sentence is usually not a problem. A similar
thing could be said for domains that involve graph mining, like weather prediction,
analysis of molecules in chemistry, image analysis, etc. A meteorologist can often
explain a particular course of events, but explaining the general theory is far from
possible. Since it seems that these complex problems are relational in nature (graphs
are relational by definition, the meaning of sentences relies on previous sentences),
the most logical next ABML method would be ILP or a variant of ILP. At the mo-
ment, these problems are deemed too complex for conventional ILP, and currently
less natural solutions are applied; they first involve extraction of patterns and then
learn with classical machine learning. We believe that argument-based approach
would simplify the search complexity of ILP to make it usable on these domains.

152

Dodatek A

Razširjeni povzetek v slovenskem
jeziku (Extended Abstract in Slovene
Language)

153

Argumentirano strojno učenje

A.1 Uvod

Strojno učenje je veja raziskav umetne inteligence, ki raziskuje različne tehnike za
avtomatsko (računalniško) učenje. Najpogosteje uporabljen tip strojnega učenja je
induktivno učenje, oz. učenje iz primerov, kjer je vsak primer sestavljen iz množice
atributov (opisne spremenljivke) in razreda (odvisna spremenljivka). Cilj strojnega
učenja je odkriti teorijo, ki zna iz atributov izračunati vrednost razreda za vse možne
primere. Dobljena teorija je zapisana v izbranem formalnem jeziku v obliki modela,
ki se lahko uporabi tako za obravnavo novih, še neznanih primerov, kot tudi za boljše
razumevanje obravnavanega problema. Nekaj tipičnih problemov učenja iz primerov:

• Iz podatkov o vremenu za preteklo obdobje se nauči napovedovati vreme v
prihodnosti.

• Iz podatkov o uspešnosti operacije za nekaj pacientov (npr. vstavljanje kolčne
proteze) se nauči napovedovati uspešnost operacije pri novih, še ne operiranih,
pacientih.

• Iz primerov šahovskih pozicij in strokovnih komentarjev k vsaki od teh pozi-
cij, se nauči tak model, ki omogoča avtomatsko generiranje komentarjev za
poljubno šahovsko pozicijo.

V praksi imamo na voljo le nekaj učnih primerov, zato rezultatu strojnega učenja
pravimo hipoteza in ne teorija, saj lahko preverimo njeno pravilnost samo na učnih
podatkih. Hipoteza je konsistentna z učnimi podatki, če napove za vse učne primere
pravilno vrednost razreda. Učni primeri opisujejo pretekle dogodke, pri katerih je
vrednost razreda, ki ga napovedujemo, znana. Atributi običajno opisujejo neke nar-
avne lastnosti primera in pričakujemo, da je iz teh atributov možno izpeljati vrednost
razreda za vsak primer. Recimo, v vremenski domeni bi atributi lahko bili: vlažnost,

155

A. RAZŠIRJENI POVZETEK V SLOVENSKEM JEZIKU (EXTENDED ABSTRACT IN

SLOVENE LANGUAGE)

veter, zračni pritisk, itd. Razred bi lahko bil količina padlega dežja na kvadratni me-
ter naslednji dan. Vendar se v realnosti izkaže, da se metode učenja velikokrat ne
uspejo naučiti dobrih hipotez zaradi različnih razlogov, npr.: (a) hipotez konsistent-
nih s podatki je mnogo, metoda vzame napačno, (b) nabor atributov je nepopoln, iz
danih atributov ni mogoče izpeljati vrednost razreda, (c) relacija med razredom in
atributi je kompleksna, katere metoda ni uspela odkriti ali (d) izbrani formalni jezik
za opisovanje hipotez je neprimeren za dani učni problem.

Ena največjih težav (točka a) v strojnem učenju je poiskati “pravo” hipotezo (ali
teorijo) med mnogimi v celotnem prostoru hipotez. Prostor hipotez določa vse
dovoljene kombinacije atributov in parametrov uporabljenih v preslikovanju med
atributi in razredom. Pogosto je veliko hipotez konsistentnih z učnimi podatki, ven-
dar mnoge med njimi niso prave, ne opisujejo vseh možnih primerov v domeni,
temveč se prilagajajo le učnim primerom. Ta znan pojav v strojnem učenju imenu-
jemo preveliko prilagajanje podatkom (angl. overfitting) in ga navadno rešujemo
na dva načina: s preferiranjem enostavnih hipotez (uporaba Occamovega rezila) ali
z uporabo domenskega predznanja. Oba načina omejita prostor hipotez. Domin-
gos [Dom99] ugotavlja, da je izbira enostavnih hipotez smiselna le, če je zelo ver-
jetno, da je tudi prava hipoteza enostavna. V nasprotnem primeru se je uporaba
domenskega predznanja skoraj vedno izkazala za bolj uspešno. V preostalih razlogih
(b-d) je uporaba domenskega znanja praktično edina možnost, s katero lahko po-
magamo učenju. Če so atributi nezadostni, mora domenski strokovnjak predlagati
nove opisne atribute. Kadar je relacija med razredom in atributi kompleksna, lahko
strokovnjak vodi algoritem učenja pri iskanju z omejitvijo prostora hipotez, ki ver-
jetno vsebuje dobro hipotezo.

Problem večine obstoječih sistemov za strojno učenje je, da zahtevajo splošno
domensko znanje, ki skorajda vedno velja in je uporabno za vse učne primere. Prido-
bivanje znanja je v splošnem znan problem, imenovan Feigenbaumovo ozko grlo [Fei84],
saj domenski strokovnjaki pogosto niso sposobni dobro izraziti njihovega znanja. Po
drugi strani se izkaže, da jim je veliko lažje razlagati znanje z uporabo konkretnih
primerov. V doktorski disertaciji predlagamo nov način pridobivanja znanja. Od
strokovnjakov ne zahtevamo splošnega domenskega znanja, temveč jim pokažemo
le nekaj učnih primerov, za katere s svojim znanjem razložijo relacijo med atributi
in razredom. Te razlage učnih primerov imenujemo argumenti. V tem kontekstu
si lahko zamišljamo vsak učni primer kot vprašanje strokovnjaku in njihoviegovi
odgovori so uporabljeni kot predznanje v učenju. Primer vprašanj:

156

A.1. Uvod

• Zakaj je tega dne deževalo, če je bil prejšnji dan topel in sončen?

• Zakaj je pacient umrl zaradi infekcije, glede na to, da ni bilo opaziti povišane
telesne temperature?

• Zakaj je lovec v dani šahovski poziciji slab?

• ...

Zavedati se moramo, da argument ni pravilo. Ker je strokovnjak podal argument
v kontekstu enega samega učnega primera, je povezava med atributi in razredom v
argumentu lahko specifična samo za dani učni primer in je ne moremo enostavno
posploševati. Primere razširjene z argumenti kličemo argumentirani primeri.

Argumentirano strojno učenje (angl. Argument-Based Machine Learning, s kratico
ABML), opisano v tej doktorski disertaciji, je razširitev strojnega učenja za učenje iz
učnih podatkov in argumentov. Cilj učenja v ABML je hipoteza, ki izpelje vrednosti
razreda iz atributov za vse učne primere in je hkrati konsistentna z danimi argumenti.
Hipoteza je konsistentna z argumentom, če uporabi razloge iz argumenta pri izpeljavi
argumentiranega primera. Za primer poglejmo potencialni odgovor strokovnjaka na
vprašanje: “Zakaj je tega dne deževalo, če je bil prejšnji dan topel in sončen?” Po-
tencialni odgovor: “Oblačnost in deževje sta se naslednji dan pojavila, ker je bil v
zraku nizek pritisk.” Na podlagi tega odgovora, se mora ABML metoda naučiti take
hipoteze, ki bi med drugim uporabila razlog “nizek pritisk” pri razlagi tega učnega
primera.

Kljub enostavnejšemu pridobivanju znanja s pomočjo argumentov, bi domenski
strokovnjak še vedno moral vložiti mnogo dela, če bi si želeli imeti argumentirane
prav vse učne primere. V praksi je to neizvedljivo, saj domenski strokovnjaki niso
pripravljeni vložiti tako veliko časa. Za ta namen smo razvili metodo za detekcijo
kritičnih učnih primerov, to so primeri, ki jih trenutno naučena hipoteza ne zna do-
bro napovedovati. Z razlago teh primerov strokovnjak doda tisto znanje, ki je za
metodo ključno - metoda ga ni uspela sama odkriti iz podatkov. S tem novim znan-
jem bo metoda odkrila hipotezo s katero bo uspela napovedati kritični primer in
posredno imela boljšo točnost napovedovanja. Vse skupaj potem ponavljamo (pro-
ces se imenuje ABML učni cikel), dokler metoda ne uspe več poiskati novih kritičnih
primerov.

V praksi se izkaže, da lahko z ABML rešujemo vse zgoraj naštete potencialne
težave pri strojnem učenju. Med razlago učnih primerov lahko domenski strokovn-
jak uporabi nov atribut, ki še ni vključen v domeno, in s tem sugerira vključitev

157

A. RAZŠIRJENI POVZETEK V SLOVENSKEM JEZIKU (EXTENDED ABSTRACT IN

SLOVENE LANGUAGE)

tega atributa v domeno. Prav tako lahko v razlogih uporabi kompleksne relacije oz.
relacije, ki jih dan formalni jezik ne more opisati (npr. vsota atributov pri učenju
pravil) in s tem predlaga izpeljani atribut, ki bi lahko pripomogel k učenju boljšega
modela. In nenazadnje, argumenti omejijo prostor iskanja, kar posredno zmanjša
verjetnost prevelikega prilagajanja učnim podatkom.

V naslednjem razdelku bomo najprej našteli vse prispevke znanosti pričujoče
doktorske disertacije. Nadaljevali bomo z osnovno definicijo strojnega učenja in
jo intuitivno opisali na enostavnem problemu učenja. Nadaljevali bomo z opisom
implementiranega produkta ABCN2, ki omogoča učenje klasifikacijskih pravil iz ar-
gumentov in učnih podatkov. V četrtem razdelku bomo opisali nekaj eksperimentov
in aplikacij z ABCN2 in v zadnjem razdelku povzeli in zaključili bistvene ugotovitve
tega dela.

A.1.1 Prispevki znanosti

• Formalna definicija argumentiranega strojnega učenja (z uporabo Dungovega
argumentacijskega okvirja) in motivacija za njegovo uporabo. Domenski strokovn-
jaki veliko lažje artikulirajo svoje znanje s pomočjo argumentov, kar je bistvena
prednost uporabe argumentov v primerjavi z ostalimi oblikami predznanja.

• Definicija argumentiranih primerov in omejitve, ki jih podani argumenti pred-
stavljajo za učne algoritme.

• Razvoj in implementacija algoritma ABCN2 za učenje klasifikacijskih pravil,
ki se uči iz primerov in danih argumentov. ABCN2 se nauči množice pravil, ki
je konsistentna z danimi učnimi podatki in argumenti.

• Razvoj metode EVC, ki glede na velikost preiskanega prostora popravi oceno
kvalitete pravila. Ta metoda je pomembna za ABCN2, ker ne podcenjuje
pravil, ki vsebujejo argumente v svojih pogojih. Poleg tega se izkaže, da
metoda koristi tudi klasičnemu učenju pravil, saj se njihove točnosti izboljšajo.

• Novi postopek, imenovan PILAR, za klasifikacijo s pravili, ki temelji na EVC
oceni. PILAR deluje bolje od trenutno znanih postopkov za klasifikacijo, saj
EVC ocene bolje predstavljajo kvaliteto pravila kot porazdelitev primerov, ki
jih pravilo pokrije. Metoda PILAR omogoča tudi uporabo pravil za korekcijo
modelov naučenih z drugimi metodami, kar posredno omogoča uporabo argu-
mentov v poljubni metodi strojnega učenja.

158

A.1. Uvod

• Razvit je bil postopek za izbiro problematičnih primerov, ki bo omogočala
domenskim strokovnjakom, da se osredotočijo le na nekaj ključnih primerov.
Ta algoritem je nujno potreben, saj domenski strokovnjaki nimajo časa natančno
razložiti prav vseh učnih primerov.

• Razvt je bil smo postopek za samodejno pridobivanje argumentov iz teksta.
V našem eksperimentu smo izboljšali model za klasifikacijo živali z uporabo
argumentov pridobljenih iz Wikipedijinih člankov.

• Evalvacija metode ABCN2 na več domenah. Ker domen ni dovolj za statističen
dokaz prednosti argumentov, smo statistično dokazali, da naključni argumenti
ne škodijo. Iz tega sklepamo, da lahko z argumenti kvečjemu izboljšamo
točnost naučenega modela, ne morejo pa je poslabšati.

Vse zgoraj omenjene metode so implementirane v sistemu Orange [DZ04].

159

A. RAZŠIRJENI POVZETEK V SLOVENSKEM JEZIKU (EXTENDED ABSTRACT IN

SLOVENE LANGUAGE)

Tabela A.1: Učni primeri za problem odobritve kredita

Ime RedniPlacnik Premozen StatusRacuna BarvaLas KreditOdobren
g. Tajkun ne da negativen plavolas da
g. Medved ne ne pozitiven rjava ne
gdč. Bevk da ne pozitiven plavolas da
ga. Bogataj da da pozitiven plavolas da
g. Računalnikar da ne negativen zelena ne

A.2 Argumentirano strojno učenje

Običajno se definicija problema strojnega učenja glasi:

• Iz danih učnih primerov;

• Poišči hipotezo konsistentno z učnimi primeri.

Za lažje razumevanje ideje strojnega učenja si poglejmo enostaven problem učenja
opisan v Tabeli A.1. Vsak primer je opisan s petimi atributi: Ime, RedniPlačnik,
Premožen, StatusRacuna (status bančnega računa) in BarvaLas ter z razredom, ki
označuje, če je bil stranki odobren bančni kredit ali ne. Cilj strojnega učenja je torej
poiskati hipotezo, ki bi iz atributnega opisa stranke ugotovila, ali se stranki odobri
kredit ali ne.

Algoritem za učenje pravil bi se zelo verjetno iz teh podatkov naučil naslednje
pravilo:

ČE BarvaLas = plavolas POTEM KreditOdobren = da

DRUGAČE KreditOdobren = ne

Očitno je pravilo konsistentno z danimi učnimi podatki, saj za vse učne primere
napove pravilni razred. Vendar tako pravilo ne bi bilo smiselno večini bančnih
uslužbencev, ker barva las le ni vedno dober indikator plačljive sposobnosti stranke.

V argumentiranem strojnem učenju (ABML) ima domenski strokovnjak možnost
z argumentom razložiti razred nekaterih učnih primerov. Recimo, da si izbere primer
gdč. Bevk in argumentira: ”gdč. Bevk je dobila kredit, ker je redni plačnik mesečnih
obrokov”. Razširjene učne primere, ki poleg opisa z atributi in razredom vsebujejo

160

A.2. Argumentirano strojno učenje

še razlago z argumentom, imenujemo argumentirani učni primeri. V ABML ar-
gumenti vplivajo na učenje hipoteze; definicija argumentiranega strojnega učenja se
tako glasi:

• Iz danih argumentiranih učnih primerov;

• Poišči hipotezo konsistentno z argumentiranimi učnimi primeri. Hipoteza je
konsistentna z argumentiranim učnim primerom, če razlaga (izpeljava) razreda
iz atributov vsebuje razloge omenjene v argumentu.

Zgoraj omenjeno pravilo tako ni več konsistentno s primerom gdč. Bevk, saj
pri razlagi, zakaj ji je bil odobren kredit, omeni barvo las in ne rednega plačevanja
obrokov, ki je bilo omenjeno v argumentu. Boljše pravilo za gdč. Bevk, ki bi se ga
naučila ABML metoda, je:

ČE RedniP lacnik = da IN StatusRacuna = pozitiven

POTEM KreditOdobren = da

V splošnem pričakujemo tri prednosti argumentiranega strojnega učenja:

1. Ker domenski strokovnjaki razlagajo posamezne primere, pričakujemo, da bodo
lahko izrazili več relevantnega domenskega znanja.

2. Argumenti dodatno omejujejo prostor hipotez in s tem zmanjšujejo možnost
prevelikega prilagajanja.

3. Naučene hipoteze bodo bolj smiselne strokovnjakom, saj pri razlagi primerov
uporabljajo iste razloge kot so jih strokovnjaki sami.

Argumentirano strojno učenje je novo področje, vendar ideja kombiniranja stro-
jnega učenja in argumentacije ni popolnoma nova. Pogosto se uporabi strojno učenje
za gradnjo argumentov, ki so nato uporabljeni v argumentaciji [BA03; AR03]. Gomez
and Chesnevar v svojem poročilu [GC04a] omenita nekaj idej združevanja argu-
mentacije in strojnega učenja, kasneje pa razvijeta izboljšano metodo za učenje nevron-
skih mrež, ki uporablja argumentacijo [GC04b]. Clark v svojem delu [Cla88] omeni
uporabnost argumentov kot predznanja, vendar se njegovi argumenti nanašajo na
celotno domeno in ne na posamezne primere.

161

A. RAZŠIRJENI POVZETEK V SLOVENSKEM JEZIKU (EXTENDED ABSTRACT IN

SLOVENE LANGUAGE)

A.3 Argumentirano učenje pravil

V tem razdelku si bomo ogledali konkretno metodo argumentiranega strojnega učenja.
Za osnovo bomo vzeli znani algoritem za učenje klasifikacijskih pravil CN2 [CB91]
in ga razširili v metodo ABCN2, ki se uči pravil iz argumentov in učnih primerov. Na-
jprej bomo formalizirali strukturo argumentiranih učnih primerov, s katerimi ABCN2
operira, nadaljevali z opisom osnovnega algoritma ABCN2 in na koncu predstavili
nekaj izboljšav, ki so potrebne za bolj učinkovito in kvalitetno učenje pravil iz argu-
mentiranih podatkov.∗

A.3.1 Argumentirani učni primeri

Učni primer v strojnem učenju sestoji iz vrednosti atributov A oz. neodvisnih spre-
menljivk in vrednostjo razreda C (odvisne spremenjivke), ki jo hočemo napovedati.
V argumentiranem strojnem učenju se učni primer razširi z dodatno razlago v ob-
liki argumentov; tak učni primer imenujemo argumentirani učni primer AE in ga
zapišemo kot trojko:

AE = (A, C, Arguments)

Element Arguments je seznam pozitivnih in negativnih argumentov Argi, ki ra-
zlagajo (vendar ne dokazujejo) vrednost razreda. Pozitiven argument sugerira imp-
likacijo med vrednostimi atributov in razredom:

C ker r1 ∧ . . . ∧ rk

medtem ko negativni argument označuje vrednosti atributov, ki običajno negativno
vplivajo na razred:

C čeprav r1 ∧ . . . ∧ rj

Vsak argument vsebuje trditev, ki je kar vrednost razreda in konjunkcijo pogojev,
kjer se vsak pogoj nanaša na en sam atribut. Pogoji so lahko numerični: X = xi

(enakost), X > xi (vrednost je večja od izbrane mejne točke) in X < xi (vrednost je
manjša od mejne točke), ali kvalitativni: vrednost atributa X je visoka oz. vrednost
X je nizka.

∗Na tem mestu bi veljalo omeniti, da učenje pravil ni edina možna metoda v ABML. V doktorski
disertaciji predstavimo varianto logistične regresije in ILP za učenje na argumentiranih primerih, kar
bomo v tem razširjenem povzetku izpustili.

162

A.3. Argumentirano učenje pravil

V našem enostavnem problemu učenja odobravanja kredita se je argument glasil:
“Gospodična Bevk je dobila kredit, ker redno plačuje mesečne obroke,” ki ga zapišemo
v naši notaciji kot:

KreditOdobren = da ker RedniP lacnik = da

Podobno bi storili v primeru negativnega argumenta, le besedo “ker” bi morali za-
menjali s “čeprav”. Na primer, argument: “Gospodična Bevk je dobila kredit, čeprav
ni premožna”, bi interpretirali kot:

KreditOdobren = da čeprav Premozen = ne

A.3.2 ABCN2 algoritem

Algoritem CN2 spada med pokrivne algoritme za učenje pravil; v vsakem ciklu se
postopek nauči najboljše pravilo na nepokritih primerih, doda pravilo v seznam vseh
pravil, odstrani primere, ki jih pravilo pokrije in ponavlja, dokler niso vsi primeri
pokriti. Obstajata dve verziji: CN2 za učenje urejenih pravil [CN89] in CN2 za
učenje neurejenih pravil [CB91]. Bistvena razlika med pravili naučenimi z enim in
drugim algoritmom je v interpretaciji naučenih pravil - pri klasifikaciji z urejenimi
pravili uporabimo prvo pravilo v seznamu, ki proži za testni primer, medtem ko pri
neurejenih pravilih upoštevamo vsa pravila, ki prožijo, in jih kombiniramo s poljubno
metodo za reševanje konfliktov med pravili. Metoda ABCN2 je razširitev slednjega
algoritma.

Pri definiciji argumentiranega strojnega učenja smo zahtevali konsistenco naučene
hipoteze z argumentiranimi primeri, kjer mora hipoteza omeniti razloge iz argu-
menta pri razlagi razreda. V učenju pravil je hipoteza množica naučenih pravil, le-ta
pa pri razlagi primera omeni pogoje pravil, ki pokrivajo argumentirani primer. V
CN2 pravilo pokrije primer, če so vsi pogoji v pravilu resnični za vrednosti danega
učnega primera. V ABCN2 ta definicija ne zadošča, saj v argumentiranem strojnem
učenju zahtevamo razlago primera s pogoji omenjenimi v argumentu. Nova definicija
relacije pokritosti (oz. AB-pokritost) je:

1. Vsi pogoji v pravilu morajo biti resnični za primer (tako kot v CN2).

2. Pravilo mora v svojih pogojih omeniti vsaj enega od pozitivnih argumentov (če
je primer argumentiran).

3. Pravilo v pogoju ne sme omeniti negativnih argumentov.

163

A. RAZŠIRJENI POVZETEK V SLOVENSKEM JEZIKU (EXTENDED ABSTRACT IN

SLOVENE LANGUAGE)

Kot primer si lahko pogledamo nekaj pravil, ki vsa pokrivajo našo gdč. Bevk, vendar
le eno od njih AB-pokriva ta primer. Spomnimo se, argument se je glasil: ”gdč. Bevk
je dobila kredit, ker redno plačuje mesečne obroke, čeprav ni premožna”. Pravila so:

R1: ČE BarvaLas = plavolas POTEM KreditOdobren = da

R2: ČE Premozen = ne IN BarvaLas = plavolas

POTEM KreditOdobren = da

R3: ČE Premozen = ne IN RedniP lacnik = da

POTEM KreditOdobren = da

R4: ČE BarvaLas = plavolas IN RedniP lacnik = da

POTEM KreditOdobren = da

Vsa štiri pravila so konsistentna z danimi učnimi podatki in pokrivajo primer gdč.
Bevk. Vendar prvo pravilo ne omeni pozitivnega argumenta, torej ne AB-pokriva
primera. Zaradi istega razloga drugo pravilo ne pokrije primera, še več, drugo prav-
ilo omeni še negativni argument, torej krši tudi tretji pogoj v definicij AB-pokritosti.
Tretje pravilo prav tako ne zadostuje pogojem, saj prav tako omeni negativni argu-
ment, medtem ko četro pravilo AB-pokriva argumentirani primer.

Cilj učenja z ABCN2 je poiskati čim bolj točno množico pravil, ki AB-pokrijejo
vse učne primere. Uporaba relacije AB-pokritosti v osnovnem CN2 bi teoretično
že zadoščala, vendar tak algoritem ne bi bil učinkovit. V pričujočem doktorski
disertaciji zato predlagamo algoritem, ki v vsakem ciklu zahteva, če še obstajajo
nepokriti argumentirani primeri, da naučeno pravilo pokrije vsaj en argumentiran
primer. V skladu s to zahtevo se spremeni algoritem za iskanje najboljšega prav-
ila: ta vrne najboljše pravilo, ki AB-pokrije vsaj en argumentirani primer. Celotni
ABCN2 algoritem je opisan v poglavju 5.2 (Algoritma 5.2 in 5.3).

A.3.3 Ocenjevanje kvalitete pravila v ABCN2

Za izbiro najboljšega pravila v ABCN2 se za primerjavo med pravili uporablja mera
kvalitete pravila. V splošnem naj bi kvaliteta pravila odražala pričakovano točnost
pravila, to je točnost na vseh možnih primerih v populaciji in ne le na učnem vzorcu.
V originalnem CN2 algoritmu je mera za točnost Laplace-ova formula p+1

n+2
[CB91],

kjer je p število pozitivnih pokritih primerov, n pa število vseh pokritih primerov.
Kasnejše različice CN2 algoritma so uporabljale različne mere točnosti, npr. v Džeroski
et al. [DCP93] so uporabili Cestnikovo m-oceno [Ces90].

164

A.3. Argumentirano učenje pravil

0.4 0.6 0.8 1.0

0.6

0.8

1.0

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
........•••• •• ••• ••• •• •• •• •• •• ••• •• • • •••• • • •• •• • • ••• •• ••• • •••• ••• ••• •• •• • ••• • ••• •• ••• •• • ••• ••• •• • •• •• ••••• •• • •••• • •• • •• • ••• •• •• • • •• •• • • •• •• •• •••• ••• •• •••• • •••••• •• •• •• ••• • • •• ••• •• ••• ••• •• •• • •• ••• ••• •• ••• •• •• • •••• •• •••• •• • ••• • •• •• ••• •• •• • •• • ••• •• • •• •• ••• • •• •• • •• •• •• • •• •• •• • ••• •• •• ••

Slika A.1: Primerjava izračunane ocene točnosti pravila z relativno frekvenco (ordi-
nata) in pravo točnostjo pravila (absciso).

Vendar imajo Laplace-ova formula, m-ocena in vse ostale uporabljene mere skupni
problem: ne upoštevajo velikosti preiskanega prostora pri učenju pravila. Namreč, v
domenah z velikim številom opisnih atributov je zelo verjetno, da bo najboljše prav-
ilo imelo relativno visoko točnost na učnih podatkih, čeprav bi bili atributi generirani
popolnoma naključno, medtem ko se kaj takega v domenah z manjšim število atrib-
utov zelo verjetno ne more zgoditi. Ta problem, ki je v literaturi razmeroma znan
(angl. multiple-comparison procedures) [JC00], se še močneje izraža v argumenti-
ranem učenju pravil. Tu so nekatera pravila naučena z razmeroma malo preiskovanja
(so konsistentna z argumenti) in so zaradi tega v primerjavi z drugimi pravili rela-
tivno podcenjena. Za ilustracijo problema si poglejmo uporabo relativne frekvence
kot mere točnosti pravila. Graf A.1 vsebuje rezultate večkratnega učenja pravila na
umetnih podatkih, kjer smo poznali točnost pravila na celotni množici (se kaže na ab-
scisi) in izmerjeno točnost z relativno frekvenco (ordinata). Izkaže se, da je relativna
frekvenca popolnoma neuporabna mera za točnost pravila, saj vedno lahko poiščemo
pravilo s 100% točnostjo na učnih podatkih neodvisno od njene točnosti na vseh po-
datkih. Pravimo, da je relativna frekvenca optimistična ocena, saj pravilom priredi
vrednosti, ki je višje od pravih vrednosti.

Razvili smo metodo EVC (kratica; angl. extreme value correction), ki popravi
optimizem funkcije kvalitete pri učenju pravil. Metoda temelji na predpostavki, da
za dano funkcijo kvalitete ne smemo uporabljati običajne porazdelitve (npr. beta
porazdelitev pri Laplace-ovi formuli, χ porazdelitev pri χ-kvadrat metodi), temveč
bi bilo bolje uporabiti ustrezno esktremno porazdelitev, saj je kvaliteta najboljšega

165

A. RAZŠIRJENI POVZETEK V SLOVENSKEM JEZIKU (EXTENDED ABSTRACT IN

SLOVENE LANGUAGE)

0 1 2 3 4 5 6 7 8 9 10

LRS

0.1

0.2

0.3

..
................................
..............................
............................
...............................
....................................

..
...

.......

.......

.......

.......

.......

....

........
...
....
.......
...
....
.......
..
....
.......
..
....
......
..
....
......
.
....
......
.
....
.....
.
....
.....
.
....
.........
..

(a) Fisher-Tippett distribucija (parametri: µ = 3,
β = 2)

0 1 2 3 4 5

χ2

0

0.5

1.0

...
.......
..

(b) χ2 z eno stopnjo prostosti.

Slika A.2: Verjetnostne distribucije

pravila ekstremna točka med vsemi kvalitetami vseh pravil. EVC preslika ekstremno
vrednost kvalitete v ustrezno vrednost na ne-ekstremni porazdelitvi in pri tem ohrani
relativno verjetnostno pozicijo točke. Slika A.2 kaže primer take preslikave iz Fisher-
Tippett porazdelitve (ekstremna porazdelitev za χ porazdelitev) v χ porazdelitev. Naj
opozorimo, da se pri korekciji z našo metodo vrednost kvalitete vedno zmanjša, saj
se odstrani efekt ekstremne vrednosti oz. efekt obširnega preiskovanja. Z EVC
lahko popravimo poljubno metodo za evalvacijo pravil. Slika A.3 kaže relacijo
med popravljeno relativno frekvenco in pravo točnost pravil. Popravljena relativna
frekvenca mnogo bolje odraža pravo točnost, kot pa samo relativna frekvenca.

Pri uporabi EVC metode v učenju moramo natančno izračunati ustrezne koefi-
ciente ekstremne porazdelitve, ki zavisijo od izbrane funkcije kvalitete in lastnosti
učnih podatkov (npr. število primerov, število atributov). Ker so koeficienti odvisni
od lastnosti učnih podatkov, ne smemo, ko se algoritem nauči eno pravilo, odstraniti
primerov, ki jih to pravilo pokrije. S tem bi namreč spremenili lastnosti podatkov in
naučeni koeficienti ne bi več veljali. Za rešitev tega problema smo v doktorski dis-
ertaciji razvili nov postopek imenovan “verjetnostno pokrivanje”, ki ne odstranjuje
pokritih primerov, vendar še vedno dobro usmerja iskanje novih pravil.

166

A.4. ABML učni cikel

0.4 0.6 0.8 1.0

0.6

0.8

1.0

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
........

•

•
•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

••

•

•
•

••

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
••

•
•

• •

•

••

•
•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

• •

•

•

•

••

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•
•

•

•

•
•

•

•

•

• •
•

••

•
•

•

••

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
• •

•

•
•

•

•

•

•

•

•
•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

• •
•

•
•

•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

Slika A.3: Primerjava izračunane ocene kvalitete pravila s popravljeno relativno
frekvenco (ordinata) in pravo kvaliteto pravila (absciso).

A.3.4 Algoritem PILAR: klasifikacija s pravili in popravljanje
poljubne metode strojnega učenja

Osnovna prednost neurejenih pravil je njihova sposobnost opisovanja lokalnih relacij
med atributi in razredom. Vendar imajo pravila tudi slabost in sicer, da je njihova
uporaba za klasifikacijo novih primerov v večini primerov netrivialna, saj lahko za
dani primer proži več pravil, ki so med seboj konfliktna. Lahko bi rekli, da so pravila
skupek lokalnih modelov in pri napovedovanju moramo agregirati njihove prispevke.

Večina metod strojnega učenja zgradi en sam globalni model, ki ga lahko enos-
tavno uporabimo za napovedovanje, vendar nima možnosti lokalne razlage. V dis-
ertaciji tako predlagamo algoritem PILAR, ki kombinira oba postopka. Ta algo-
ritem združi osnovno globalno metodo s pravili z uporabo log-linearnega modela
in prilagodi koeficiente modela, da lokalne napovedi globalnega modela ustrezajo
lokalnim napovedim pravil. V posebnem primeru, ko je globalni model primitiven
(npr. napovedovanje večinskega razreda), PILAR metoda deluje kot agregator pravil.
V doktorski disertaciji primerjamo uporabo PILAR-ja kot agregatorja pravil in kot
popravek logistične regresije. V obeh primerih dobimo statistično boljše rezultate.

A.4 ABML učni cikel

Argumenti v argumentiranih primerih so običajno pridobljeni s strani domenskih
strokovnjakov, ki s svojim predznanjem razložijo relacijo med razredom primera in

167

A. RAZŠIRJENI POVZETEK V SLOVENSKEM JEZIKU (EXTENDED ABSTRACT IN

SLOVENE LANGUAGE)

vrednostimi atributov. Zato ne moremo pričakovati, da bi strokovnjaki argumentirali
vse učne primere, saj za kaj takega ne bi imeli časa. Pripraviti jim moramo izbiro
učnih primerov, ki bodo z argumenti občutno vplivali na kvaliteto naučene hipoteze.
Na primer, ne bi bilo smiselno argumentirati primerov, ki jih metoda že sama dobro
razloži.

V ta namen smo razvili iterativni postopek za odkrivanje in argumentiranje kritičnih
primerov, ki ga imenujemo ABML učni cikel. Cikel začne z “navadnimi” učnimi
primeri (brez argumentov) in v vsakem ciklu doda argument k enemu učnemu primeru.
Postopek, ki se ustavi, ko ne najde več novega kritičnega primera, ima štiri korake:

1. Nauči se hiptezo z ABML na danih učnih podatkih.

2. Poišči kritični primer in ga predloži domenskemu strokovnjaku za argumentacijo.
Če kritičnega primera ne najdemo, se postopek ustavi.

3. Domenski strokovnjak razloži dani primer z argumenti v naravnem jeziku. Ti
argumenti se ročno prevedejo v formalne argumente, ki jih sprejema ABML
metoda, in dodajo h kritičnemu učnemu primeru.

4. Vrni se na korak 1.

Osnovna ideja koraka 2 je poiskati primer, ki ga metoda ne more uspešno ra-
zložiti, z drugimi besedami, metoda napačno napove razred primera. V najbolj enos-
tavni izvedbi za iskanje teh primerov se naučimo modela in ga testiramo na učnih
podatkih. Napačno klasificirani primeri tako postanejo kritični primeri. Problem tega
pristopa je, da ne deluje pri metodah z lastnostjo prevelikega prilagajanja (angl. over-
fitting), kjer je bolje uporabiti metodo križnega preverjanja za odkrivanje kritičnih
primerov.

A.5 Eksperimenti in aplikacije

Za evalvacijo metode ABCN2 bomo v tem razdelku predstavili vrsto eksperimentov
in aplikacij. To je edini možni način evalvacije, saj korektna statistična primerjava ni
praktično izvedljiva, ker bi potrebovali mnogo učnih domen in za vsako domenskega
strokovnjaka, ki bi razlagal učne primere. Z izvedenimi eksperimenti in aplikacijami
odgovorimo na nekaj ključnih vprašanj, ki se tičejo evalvacije metode:

• Ali so hipoteze naučene iz argumentiranih podatkov boljše kot hipoteze iz
navadnih (neargumentiranih podatkih) s stališča točnosti in razumljivosti?

168

A.5. Eksperimenti in aplikacije

• Kako učinkovita je metoda za izbiro kritičnih primerov?

• Ali oziroma kako težko je domenski strokovnjakom podajati znanje v obliki
argumentov?

• Ali lahko rekonstruiramo (in izboljšamo) dano bazo znanja, kjer se trenutno
znanje v bazi uporablja kot izvor argumentov?

• Ali lahko (in kako) uporabimo argumente, ki omenjajo informacijo, ki ni za-
pisana v atributih?

• Ali lahko argumente avtomatsko pridobimo iz neodvisne literature (npr. inter-
net)?

• Kako napake argumentov vplivajo na točnost naučenih hipotez?

A.5.1 Klasifikacija živali

Prvi eksperiment z ABCN2 smo izvedli na domeni za klasifikacijo živali, kjer je cilj
klasificirati živali glede na njihov tip v živalskem drevesu (domena ZOO [AN07]).
Domena vsebuje 101 žival, vsaka je opisana s sedemnajstimi atributi in klasificirana
v enega od naslednjih razredov: sesalec, ptič, plazilec, riba, dvoživka, insekt, os-
talo. Ta domena je zelo ustrezna za začetno evalvacijo, ker ne potrebujemo pravega
domenskega strokovnjaka, ampak lahko ustrezne argumente kar poiščemo iz encik-
lopedije.

Domeno smo razdelili na učno množico (70%) in testno množico (30%). Najprej
smo se naučili pravil brez uporabe argumentov, kjer smo z ABCN2 na testni množici
dosegli točnost približno 90%. Nato smo znotraj ABML učnega cikla identificirali
tri kritične primere:

1. Prvi kritični primer je bil želva. Želva je plazilec in za plazilce je med drugim
značilno, da imajo hrbtenjačo in ležejo jajca (argument: želva je plazilec, ker
hrbtenjača=da in leže jajca=da). S pomočjo tega argumenta je ABCN2 dodal
pravilo (poudarjen del pravila izhaja iz argumenta):

CE hrbtenjaca=da IN leze jajca=da IN
vodna zival=ne IN perje=ne POTEM tip=plazilec

169

A. RAZŠIRJENI POVZETEK V SLOVENSKEM JEZIKU (EXTENDED ABSTRACT IN

SLOVENE LANGUAGE)

2. Naslednji kritični primer je bila morska kača (plazilec). V opisnih atributih
tega primera piše, da morska kača ne diha, čeprav v vseh knjigah piše, da
morska kača diha s pljuči. Očitno gre pri tem primeru za napako v podatkih.

3. Zadnji kritični primer je bil močerad (dvoživka). Naš argument je: močerad
je dvoživka, ker ima hrbtenjačo, leže jajca in mora živeti v vlažnem okolju za
preživetje. Pravilo naučeno iz tega argumenta je bilo:

CE hrbtenjaca=da IN leze jajca=da IN vodna zival=da
IN stevilo nog=4 POTEM tip=dvozivka

V eksperimentu smo torej vse skupaj dodali dva argumenta in oba sta bila nepopolna,
saj je ABCN2 oba specializiral z dodatnimi pogoji. Končna točnost pravil na učni
množici je bila 100%. Eksperiment nazorno prikazuje učinkovitost ABML učnega
cikla, saj smo s pomočjo samo dveh argumentov uspeli povečati točnost za 10%. Po-
leg tega so nova pravila bolj v skladu s strokovnim znanjem - enciklopedijo in s tem
že na prvi pogled izgledajo pravilneje. Izkazalo se je tudi, da je ABML učni cikel
primeren za odkrivanje napak v učnih primerih.

A.5.2 Odobritev socialne pomoči

V tem delu bomo povzeli rezultate eksperimenta z ABCN2 v pravni domeni: odobritev
socialne pomoči za obisk družinskih članov v bolnici [MvBC+06]. Domena je sicer
umetna, vendar je bila zaradi realnosti atributov in primerov večkrat citirana v pravni
literaturi, ki so jo v preteklosti reševali z različnimi tehnikami strojnega učenja.

Točnost osnovne CN2 metode brez uporabe argumentov je zelo visokih 99%. Po
sedmih ABML ciklih se je točnost z uporabo ABCN2 povečala na 99.8%. Ker je
bila točnost učenja brez argumentov že zelo visoka, seveda ni možno dobiti mnogo
boljše rezultate z argumentiranim učenjem. Glavna prednost ABCN2 v tej domeni
je razumljivost naučenih pravil, saj so bila končna pravila mnogo bolj razumljiva
domenskemu strokovnjaku (Trevor Bench Capon), ker so vsebovala njegove razlage
primerov. Izkazalo se je tudi, da je ABCN2 mnogo bolj odporna na šum od ostalih
metod, kar je ključnega pomena za tak tip aplikacij, saj odločitve administracije vse-
bujejo veliko napačnih odločitev.

170

A.5. Eksperimenti in aplikacije

CN2 ABCN2 NB C4.5 LogReg

0.6

0.65

0.7

0.75

0.8

0.85

class: DEATH (yes/no)

A
U

C

Slika A.4: Povprečne vrednosti in standardne napake AUC.

A.5.3 Prognostika infekcije med starejšimi občani

V tej domeni smo z ABCN2 razvili model za pomoč zdravnikom pri ocenjevanju
kritičnosti infekcije med starejšimi občani. Na podlagi tega modela se naj bi zdravniki
odločili, ali pacient ostane v bolnici ali lahko oddide domov. Podatke smo dobili iz
ljubljanske klinike za infekcijske bolezni in vključujejo vse ljudi starejše od 65 let,
ki so prišli v bolnico med 1.junijem 2004 in 1.junijem 2005 zaradi okužbe. Razred
označuje ali je pri pacientu v roku 30 dni po nastopu okužbe nastopila smrt.

Tu je domenski strokovnjak (zdravnik) argumentiral vse pozitivne primere (kjer
je pacient preminil) in nobenega negativnega. Z uporabo argumentov je bila ABCN2
signifikantno boljša metoda (glede na klasifikacijsko točnost, AUC in Brier Score)
od CN2, naivnega Bayesa in logistične regresije (glej sliko A.4 za primerjavo AUC).
Kljub boljšim rezultatom učenja z argumenti in upoštevaje, da so bila naučena prav-
ila konsistentna s strokovnim znanjem, se domenskemu strokovnjaku (dr. Jerneja
Videčnik, dr. med.) ABCN2 pravila niso zdela bolj (niti ne manj) smiselna od pravil
dobljenih z navadnim CN2. Ta anomalija nastane zaradi kratke dolžine argumentov.
Vsi argumenti so namreč vsebovali le en razlog, na primer:

smrt = da ker frekvenca dihanja >= 16

171

A. RAZŠIRJENI POVZETEK V SLOVENSKEM JEZIKU (EXTENDED ABSTRACT IN

SLOVENE LANGUAGE)

Ker tak argument omeji preiskovanje razmeroma malo (pravilo mora vsebovati le ta
pogoj, ostali so poljubni) in ker so bila pravila razmeroma dolga (3-5 pogojev na
pravilo), se pravila niso občutno razlikovala po razumljivosti. Vseeno pa so ti kratki
argumenti še vedno omogočili bolj točno učenje.

A.5.4 Prognostika bolezni srca

Domena za prognostiko bolezni srca (SAHeart) [RdPB+83] je prosto dostopna in
opisuje 462 moških iz Južne Afrike. Učni primeri so opisani z devetimi atributi:
krvni pritisk, kajenje, holesterol, debelost, družinska anamneza, stil življenja (type-
A), kožna guba, alkohol in starost ter razredom chd, ki označuje, če pacient ima srčno
bolezen ali ne.

Pri tem poskusu nismo imeli na voljo domenskih strokovnjakov. Zanimalo nas je,
če lahko z uporabo našega splošnega znanja (ki je lahko napačno) o srčnih boleznih
pomagamo ABCN2, da se nauči bolj točne hipoteze. Ta test služi tudi kot preizkus
ABCN2, kako občutljiva je metoda na napake v argumentih. Po desetih iteracijah
ABML učnega cikla se je klasifikacijska točnost ABCN2 zvišala iz začetnih 71% na
75%, Brier Score se je izboljšal iz 0.37 na 0.36, le AUC se ni spremenila. Ne glede na
to, da naši argumenti niso bili popolni, smo še vedno uspeli izboljšati začetni model.
To je pomembna ugotovitev, saj kaže, da predznanje ne rabi biti popolnoma pravilno
in je lahko še vedno uporabno. Seveda se zavedamo, da bi kardiologovi argumenti
verjetno še bolj izboljšali točnost naučenega modela.

A.5.5 Odobravanje kredita (Japanese Credit Screening
Database)

Japonska domena za odobravanje kredita opisuje 125 prosilcev kredita z desetimi
atributi in razredom, ki označuje, če je oseba dobila kredit ali ne. Domeni je priloženo
tudi suboptimalno domensko znanje (6 pravil, ki jih posamezniki v bankah uporabl-
jajo za podeljevanje kredita), ki doseže 83% klasifikacijsko točnost na učnih primerih.
V tem poskusu smo uporabili to domensko znanje kot trenutno bazo znanja, ki nam
služi kot izvor argumentov. Cilj učenja z ABCN2 je bil (a) rekonstruirati to bazo
znanja in jo (b) izboljšati.

Brez argumentov se je ABCN2 naučil le tri pravila, ki so dosegala 76% klasi-
fikacijsko točnost. Po petih iteracijah ABML učnega cikla je model obsegal 7 pravil
in 89% klasifikacijsko točnost. S tem smo popolnoma uspeli rekonstruirati originalno

172

A.5. Eksperimenti in aplikacije

bazo znanja, saj je, od vseh sedmih naučenih pravil, šest pravil popolnoma ustrezalo
originalni bazi znanja. Sedmo pravilo tako predstavlja dodatno pridobljeno znanje,
ki je še izboljšalo klasifikacijsko točnost iz 83% na 89%.

A.5.6 Konstrukcija kompleksnih šahovskih konceptov

Dandanašnji računalniški programi za igranje šaha so izredno dobri pri igranju šaha,
vendar skorajda neuporabni za učenje šaha ali razlago šahovskih partij. Vsako pozi-
cijo označijo s številosko vrednostjo, ki označuje agregirano situacijo pozicije. Na
primer, vrednost 1.20 naj bi pomenila, da je beli v prednosti za dobrega kmeta, čeprav
ni nujno, da tudi dejansko ima kmeta več; lahko ima iniciativo v napadu, boljše
postavljene lovce, itd. Trenutni programi ne znajo razumljivo razložiti te vrednosti
človeku, zakaj je beli v boljšem položaju. Nedavno smo razvili sistem za učenje
šaha [SMG+06], ki razlaga vrednosti hevristične funkcije s spremembami vrednosti
posameznih atributov v evaluaciji pozicije. Izkaže se, da hevristične funkcije v
glavnem uporabljajo primitivne šahovske koncepte (npr. število kmetov, mobilnosti
figur, itd.), ki pa niso dovolj za razumevanje splošnih šahovskih pozicij.

Naslednji eksperiment demonstrira uporabnost ABCN2 za učenje kompleksnih
šahovskih konceptov. Izbrali smo koncept slabega lovca. Vzeli smo 200 šahovskih
pozicij in jih opisali z atributi, ki so tipično uporabljeni v hevrističnih funkcijah za
igranje šaha. Jana Krivec (ženska velemojstrica) in Matej Guid (FIDE mojster) sta
v vsaki od teh pozicij ocenila lovca kot “slabi lovec” ali “dober lovec” in pri tem
uporabljala njuno šahovsko predznanje.

Za začetek sta domenska strokovnjaka Guid in Krivec poskusila z uporabo danih
atributov ročno generirati pravila, ki bi razlikovala dobrega od slabega lovca. Vendar
se je to izkazalo za zelo težek problem, saj so njuna pravila delovala relativno slabo,
dosegla so samo 59% klasifikacijsko točnost. ABCN2 je na danih podatkih (brez
argumentov) dosegla mnogo boljšo točnost 72%. Nato smo izvedli 8 ABML učnih
ciklov in pri tem dodali 7 argumentov. V nekaterih kritičnih primerih Guid in Krivec
nista uspela razložiti danih pozicij s samo obstoječimi atributi, zato smo v procesu
dodali nekaj dodatnih atributov. Točnost končnega modela je dosegla visokih 95%.
Iz slike A.5 je očitna učinkovitost algoritma za izbiro kritičnih primerov, saj prvih
nekaj argumentov najbolj poveča točnost naučenih pravil. Vidi se tudi, da je doda-
janje atributov, ki so bili predlagani z argumenti, mnogo prispevalo k točnosti ostalih
metod. ABML učni cikel je torej dober postopek tudi za odkrivanje manjkajočih
atributov. Ta eksperiment jasno kaže izboljšanje klasifikacijske točnosti z uporabo

173

A. RAZŠIRJENI POVZETEK V SLOVENSKEM JEZIKU (EXTENDED ABSTRACT IN

SLOVENE LANGUAGE)

0 1 2 3 4 5 6 7 8

Iterations

0.7

0.8

0.9

1.0

KT

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...............
....................................

....................
..........
..........
..........
..........
..........
..........
..

...................
...................

...................
.

∗
∗
∗
∗
∗
∗
∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

.............
.............
.............
.............
.............
.............

.............
......

...
...
...
...
.............

....
...

Slika A.5: Izboljšanje klasifikacijske točnosti (KT) skozi 8 ABML učnih ciklov
za ABCN2 (polna črta), logistično regresijo (zvezdice ∗), C4.5 (prekinjena črta) in
navadni CN2 (pikčasta črta).

argumentov. Še bolj pa kaže, da je strokovnjakom mnogo lažje razlagati posamezne
primere in te razlage uporabiti v ABML metodi (končna točnost 95%), kot generirati
celoten napovedni model brez pomoči računalnika (točnost samo 59%).

A.5.7 Avtomatska konstrukcija argumentov iz teksta

V vseh ABML aplikacijah, opisanih do tega trenutka, so domenski strokovnjaki argu-
mentirali učne primere. V Možina s sodelavci [MGB09] smo argumente ekstrahirali
iz teksta kot prikaz uporabe ABML, kadar nimamo dostopa do domenskih strokovn-
jakov. Naš pristop predpostavlja, da je v tekstu mnogo lažje odkriti specifične relacije
za posamezne primere, kot pa avtomatsko generiranje celotnih hipotez samo iz teksta.

Argumente smo konstruirali s pomočjo algoritmov za iskanje semantičnih relacij
v tekstu; iskali smo semantične relacije med danimi vrednostimi atributov in razreda
za posamezne primere. Recimo, da nas zanima, zakaj je želva plazilec, pri čemer
iz atributnega opisa vemo, da želva leže jajca. Naš algoritem v tekstu poišče vse
stavke, kjer se besedi “jajca” in “plazilec” hkrati pojavljata, npr.: ”večina plazilcev
leže jajca”ali ”plazilci valijo jajca”. Na podlagi števila takih stavkov z enostavno
statistično metodo ugotovimo, če je povezava med vrednostjo atributa in razreda
statistično signifikantna, in če je, to relacijo uporabimo kot del argumenta. Za boljše
odkrivanje semantičnih povezav v naravnem jeziku smo uporabili WordNet [Fel98],
bazo z mnogimi semantičnimi povezavami med besedami, za odkrivanje sinonimov

174

A.6. Zaključek

in raznovrstnih izpeljank (npr. plazilec→ plazilci).

Pristop smo testirali na domeni za klasifikacijo živali. Vsi argumenti so bili av-
tomatsko konstruirani iz člankov na Wikipediji.† Za evalvacijo smo 10-krat ponovili
10-kratno križno preverjanje in vsakič generirali argumente za prav vse učne primere.
Brez argumentov je ABCN2 v povprečju dosegla 94.5% klasifikacijsko točnost, a z
argumenti 96.7%, kar je statistično boljši rezultat. ABCN2 se nauči boljšega mod-
ela tudi od ostalih standardnih metod strojnega učenja (npr. naivni Bayes 92.6%,
SVM 90%, C4.5 92.57%). Rezultati se v tem eksperimentu rahlo razlikujejo od prej
opisanega eksperimenta na tej domeni, zaradi spremenjene tehnike evalvacije.

A.5.8 Vpliv napačnih argumentov na točnost hipoteze

Ali lahko napačni (oz. slabi) argumenti poslabšajo točnost končnega modela glede
na originalni model? Ker argumenti omejujejo prostor sprejemljivih hipotez, bi lahko
pričakovali, da bodo napačni argumenti omejili prostor iskanja na prostor slabih
hipotez in s tem onemogočili ABCN2 poiskati dober končni model.

Z obsežnim eksperimentiranjem smo pokazali, da argumenti ne morejo poslabšati
modela dokler so argumenti boljši ali enako dobri kot naključno generirani argu-
menti. Izkaže se namreč, da naključno generirani argumenti v povprečju ne poslabšajo
točnosti končnega modela, iz česar lahko sklepamo, da tudi argumenti, ki so boljši
od naključnih ne bodo poslabšali modela. Možno bi bilo s pazljivo konstruiran-
imi argumenti, ki so slabši od naključnih, poslabšati končni model. Vendar, ker
tega od domenskih strokovnjakov, ki si želijo dobiti čim boljše modele, ne moremo
pričakovati, lahko trdimo, da napačni (oz. slabi) argumenti ne poslabšajo točnosti
končnega modela.

A.6 Zaključek

V disertaciji smo definirali argumentirano strojno učenje, ki združuje strojno učenje
z nekaj koncepti iz argumentacijske teorije. Argumentacijska teorija je posebna veja
logike, ki ne zahteva nokonfliktnosti med pravili in dejstvi ter s tem omogoča enos-
tavno pridobivanje ekspertnega znanja in simulira človeško sklepanje. V argumen-
tiranem strojnem učenju se domenski strokovnjak fokusira na konkretni učni primer
in poskuša z argumentom razložiti relacijo med razredom in atributi.

†http://en.wikipedia.org

175

http://en.wikipedia.org

A. RAZŠIRJENI POVZETEK V SLOVENSKEM JEZIKU (EXTENDED ABSTRACT IN

SLOVENE LANGUAGE)

Učni primer, razložen z argumentom, se imenuje argumentirani učni primer. V
argumentiranem strojnem učenju se učimo iz argumentiranih učnih podatkov, kjer
zahtevamo, da je naučena hipoteza konsistentna z danimi učnimi podatki in nji-
hovimi argumenti. Na podlagi osnovih principov argumentiranega učenja smo razvili
metodo ABCN2, ki je razširjenja različica znanega algoritma za učenje pravil CN2.

ABCN2 smo še dodatno razširili z metodi EVC in PILAR. Prva metoda kori-
gira ocenjeno točnost pravil glede na število pregledanih pravil v postopku učenja.
PILAR je klasifikacijska metoda, ki upošteva korekcije metode EVC in zgradi log-
linearni globalni model iz naučenih pravil. Obe metodi sta se izkazali kot pomembni
izboljšavi ABCN2, vendar povečujeta zahtevani čas učenja. Slednje nas ne moti, saj
je sam čas učenja še vedno zanemarljivo majhen v primerjavi s časom, ki ga porabimo
za sodelovanje s strokovnjakom.

Predlagani algoritem za izbiro kritičnih primerov vedno izbere primer, ki ga
trenutna metoda napačno klasificira. Vprašanje za prihodnje delo je, če je to vedno
smiselno. Namreč, metoda lahko napačno klasificira tudi osamelec (angl. outlier), ki
ga strokovnjaki zelo verjetno ne bodo znali razložiti oz., če bodo našli razlago, je le-ta
lahko izsiljena. Ali je možno za dani učni primer oceniti verjetnost, da bo domenski
strokovnjak poznal odgovor? S tem vprašanjem se bomo ukvarjali v prihodnosti.

Z eksperimenti smo ugotovili naslednje prednosti ABML pristopa in metode
ABCN2:

• Domenskim strokovnjakom je lažje argumentirati specifične primere kot poda-
jati splošno domensko znanje.

• Kritični primeri, ki bi z argumenti najbolj vplivali na točnost modela, so av-
tomatsko odkriti znotraj ABML učnega cikla.

• S protiprimeri, ki spodbijajo dane argumente, omogočimo strokovnjakom izpopol-
nitev njihovih argumentov. V enem od eksperimentov (učenje šahovskih kon-
ceptov) se je izkazalo, da s tem celo izboljšamo znanje strokovnjakov, saj se
do tega trenutka niso zavedali teh protiprimerov.

• Pravila naučena z ABCN2 so strokovnjakom bolj razumljiva kot pravila naučena
samo s CN2.

• V številnih eksperimentih in aplikacijah je ABCN2 dosegel boljšo klasifikaci-
jsko točnost (in tudi druge mere kvalitete) kot CN2.

176

A.6. Zaključek

V enem od zadnjih eksperimentov smo razvili metodo za avtomatsko odkrivanje
argumentov iz teksta. Ideja tega postopka je odkriti argumente za dane primere, kadar
nam domenski strokovnjak ni na voljo. Trenutno smo s tem postopkom dobili dobre
rezultate na enem eksperimentu in v nadaljnjem delu planiramo ta princip aplicirati
še na druge domene.

Pričujoče delo opisuje le eno implementacijo ABML koncepta; za učenje neure-
jenih pravil. Naše prepričanje je, da bi se ta koncept izkazal za še bolj uporabnega v
kompleksnejših domenah (npr. razumevanje teksta, grafov, zaporedij), kjer je prostor
hipotez običajno še veliko večji in je brez uporabe predznanja praktično nemogoče
izvesti uspešno učenje. Verjetno najbolj primerna metoda za učenje v teh domenah je
ILP, saj omogoča opis kompleksnih relacij (rekurzivne relacije, relacije med primeri,
itd.) v naučeni hipotezi. V doktorski disertaciji smo opisali nekaj idej za razvoj
metode AB-ILP (argument based ILP). V nadaljnjem delu nameravamo te ideje im-
plementirati in jih testirati na realnih domenah.

177

A.6. Zaključek

179

Bibliography

[ACE] ACE – Automatic Content Extraction, http://www.nist.gov/speech/tests/ace.

[ADZ+07] Noriaki Aoki, Janez Demšar, Blaž Zupan, Martin Možina, Ernesto A. Pretto,
Jun Oda, Hiroshi Tanaka, Katsuhiko Sugimoto, Toshiharu Yoshioka, and Tsug-
uya Fukui. Predictive model for estimating risk of crush syndrome : a data
mining approach. The Journal of trauma, injury, infection, and critical care,
62(4):940–945, 2007.

[AN07] A. Asuncion and D.J. Newman. UCI machine learning repository, 2007.

[AR03] Kevin D. Ashley and Edwina L. Rissland. Law, learning and representation.
Artificial Intelligence, 150:17–58, 2003.

[Atk89] Kendall E. Atkinson. An Introduction to Numerical Analysis. John Wiley and
Sons, New York, 1989.

[BA03] Stefanie Brüninghaus and Kevin D. Ashley. Predicting the outcome of case-
based legal arguments. In G. Sartor, editor, Proceedings of the 9th Interna-
tional Conference on Artificial Intelligence and Law (ICAIL), pages 233–242,
Edinburgh, United Kingdom, June 2003.

[BC91a] Trevor J. M. Bench-Capon. Knowledge-based systems and legal applications.
Academic Press Professional, Inc., San Diego, CA, USA, 1991.

[BC91b] Trevor J.M. Bench-Capon. Knowledge Based Systems and Legal Applications,
chapter Knowledge Based Systems Applied To Law: A Framework for Discus-
sion, pages 329–342. Academic Press., 1991.

[BC93] Trevor J.M. Bench-Capon. Neural nets and open texture. In Fourth Interna-
tional Conference on AI and Law, pages 292–297, Amsterdam, 1993. ACM
Press.

181

BIBLIOGRAPHY

[BCC00] Trevor J.M. Bench-Capon and Frans Coenen. An experiment in discover-
ing association rules in the legal domain. In 11th International Workshop on
Database and Expert Systems Applications, pages 1056–1060, Los Alamitos,
2000. IEEE Computer Society.

[BM04] Ivan Bratko and Martin Možina. Argumentation and machine learning. In:
Deliverable 2.1 for the ASPIC project, 2004.

[BM05] Razvan Bunescu and Raymond J. Mooney. Subsequence kernels for relation
extraction. In Proceedings of the 19th Conference on Neural Information Pro-
cessing Systems, Vancouver, British Columbia, 2005.

[Boo89] John H. Boose. A survey of knowledge acquisition techniques and tools.
Knowledge Acquisition, 1(1):3–37, 1989.

[Bra01] Ivan Bratko. PROLOG Programming for Artificial Intelligence. Third edition.
Addison-Wesley, Harlow, England, 2001.

[Bre96] Leo Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.

[Bre01] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[Bri50] Glenn W. Brier. Verification of forecasts expressed in terms of probabilities.
Mon. Wea. Rev., 78, 1950.

[BS91] Wray Buntine and David Stirling. Interactive induction. Machine intelligence,
12:121–137, 1991.

[Bud01] Raluca Budiu. The role of background knowledge in sentence processing. PhD
thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA., 2001. Available as Technical Report No. CMU-CS-01-148.

[BZ04] Marko Bohanec and Blaž Zupan. A function-decomposition method for de-
velopment of hierarchical multi-attribute decision models. Decision Support
Systems, 36:215–233, 2004.

[CAL94] David Cohn, Les Atlas, and Richard Ladner. Improving generalization with
active learning. Mach. Learn., 15(2):201–221, 1994.

[CB91] Peter Clark and Robin Boswell. Rule induction with CN2: Some recent im-
provements. In Machine Learning - Proceeding of the Fifth Europen Confer-
ence (EWSL-91), pages 151–163, Berlin, 1991.

182

Bibliography

[Ces90] Bojan Cestnik. Estimating probabilities: A crucial task in machine learning. In
Proceedings of the Ninth European Conference on Artificial Intelligence, pages
147–149, 1990.

[Chk03] Timothy Chklovski. Using Analogy to Acquire Commonsense Knowledge from
Human Contributors. PhD thesis, MIT Artificial Intelligence Laboratory, 2003.

[CL01] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector
machines, 2001. Software available at http://www.csie.ntu.edu.tw/

˜cjlin/libsvm.

[Cla88] Peter Clark. Representing arguments as background knowledge for constrain-
ing generalisation. In Derek Sleeman, editor, Third European Working Session
on Learning, October 1988.

[CM93] Peter Clark and Stan Matwin. Using qualitative models to guide inductive
learning. In Proceedings of the tenth international machine learning confer-
ence, 1993.

[CN89] Peter Clark and Tim Niblett. The CN2 induction algorithm. Machine Learning
Journal, 4(3):261–283, 1989.

[Coh94] William W. Cohen. Grammatically biased learning: Learning logic pro-
grams using an explicit antecedent description language. Artificial Intelligence,
68:303–366, 1994.

[Coh95] William W. Cohen. Fast effective rule induction. In In Proceedings of the
Twelfth International Conference on Machine Learning, pages 115–123. Mor-
gan Kaufmann, 1995.

[Col01] Stuart Coles. An Introduction to Statistical Modeling of Extreme Values.
Springer, 1 edition, december 2001.

[Coo94] Nancy J. Cooke. Varieties of knowledge elicitation techniques. Int. J. Hum.-
Comput. Stud., 41(6):801–849, 1994.

[CRL00] Daniela V. Carbogim, David Robertson, and John Lee. Argument-based appli-
cations to knowledge engineering. Knowl. Eng. Rev., 15(2):119–149, 2000.

[CS99] William W. Cohen and Yoram Singer. A simple, fast, and effective rule learner.
In In Proceedings of the Sixteenth National Conference on Artificial Intelli-
gence, pages 335–342. AAAI Press, 1999.

183

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

BIBLIOGRAPHY

[dAT01] Pedro de Almeida and Luı́s Torgo. The use of domain knowledge in feature
construction for financial time series prediction. In Progress in Artificial Intel-
ligence, pages 29–39, 2001.

[DCP93] Sašo Džeroski, Bojan Cestnik, and Igor Petrovski. Using the m-estimate in
rule induction. Journal of Computing and Information Technology, 1(1):37–
46, 1993.

[Dem06] Janez Demšar. Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research, 7:1–30, 2006.

[Die02] Thomas G. Dietterich. The Handbook of Brain Theory and Neural Networks,
Second Edition, chapter Ensemble Learning, pages 405–409. The MIT Press,
2002.

[DKS08] Krzysztof Dembczyński, Wojciech Kotlowski, and Roman Slowiński. Maxi-
mum likelihood rule ensembles. In ICML ’08: Proceedings of the 25th interna-
tional conference on Machine learning, pages 224–231, New York, NY, USA,
2008. ACM.

[Dom99] Pedro Domingos. The role of occam’s razor in knowledge discovery. Data
Mining and Knowledge Discovery, 3(4):409–425, 1999.

[Dun93] Ted E. Dunning. Accurate methods for the statistics of surprise and coinci-
dence. Computational Linguistics, 19(1):61–74, 1993.

[Dun95] Phan M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming, and n-person games. Artificial
Intelligence, 77:321–357, 1995.

[DZ04] Janez Demšar and B. Zupan. Orange: From experimental machine learning
to interactive data mining. White Paper [http://www.ailab.si/orange], Faculty of
Computer and Information Science, University of Ljubljana, 2004.

[Edv95] Lilian Edvards. Modelling law using a feminist theoretical perspective. Law,
Computers and Artificial Intelligence, 4:95–110, 1995.

[Fei84] Edward A. Feigenbaum. Knowledge engineering: the applied side of artificial
intelligence. In Proc. of a symposium on Computer culture: the scientific,
intellectual, and social impact of the computer, pages 91–107, New York, NY,
USA, 1984. New York Academy of Sciences.

184

Bibliography

[Fei03] Edward A. Feigenbaum. Some challenges and grand challenges for computa-
tional intelligence. Source Journal of the ACM, 50(1):32–40, 2003.

[Fel98] Christiane Fellbaum. WordNet. An Electronic Lexical Database. MIT Press,
1998.

[FF05] Johannes Fürnkranz and Peter A. Flach. Roc ’n’ rule learning – towards a
better understanding of covering algorithms. Machine Learning, 58(1):39–77,
January 2005.

[For86] Richard Forsyth. Machine learning for expert systems. Machine Learning,
1(1):3–37, 1986.

[FP08] Jerome H. Friedman and Bogdan E. Popescu. Predictive learning via rule en-
sembles. Ann. Appl. Stat., 2(3):916–954, 2008.

[FPM+] Paolo Frasconi, Andrea Passerini, Stephen Muggleton, , and Huma Lodhi.
Declarative kernels. Technical Report RT 2/2004, Dipartimento di Sistemi e
Informatica, Universit‘a di Firenze, 2004.

[FR86] Richard Forsyth and Roy Rada. Machine learning: applications in expert sys-
tems and information retrieval. Halsted Press, New York, NY, USA, 1986.

[FS97] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of Computer and System
Sciences, 55(1):119–139, 1997.

[FT28] Ronald A. Fisher and Leonard H.C. Tippett. Limiting forms of the frequency
distribution of the largest and smallest member of a sample. Proc. Camb. Phil.
Soc., 24:180–190, 1928.

[Fur97] Johannes Furnkranz. Pruning algorithms for rule learning. Machine Learning,
27(2):139–171, 1997.

[GC04a] Sergio A. Gomez and Carlos I. Chesnevar. Integrating defeasible argumenta-
tion and machine learning techniques. Technical report, Universidad Nacional
del Sur, 2004.

[GC04b] Sergio A. Gomez and Carlos I. Chesnevar. Integrating defeasible argumenta-
tion with fuzzy art neural networks for pattern classification. Journal of Com-
puter Science and Technology, 4(1):45–51, April 2004.

[GL54] Emil J. Gumbel and Julivs Lieblein. Some applications of extreme value mod-
els. American Statistician, 8(5):14–17, 1954.

185

BIBLIOGRAPHY

[GLM07] Alexander Genkin, David Lewis, and David Madigan. Large-scale bayesian lo-
gistic regression for text categorization. Technometrics, 49(3):291–304, 2007.

[GLR07] Claudio Giuliano, Alberto Lavelli, and Lorenza Romano. Relation extraction
and the influence of automatic named entity recognition. ACM Transactions on
Speech and Language Processing, 5(1), 2007.

[GRS02] Minos Garofalakis, Rajeev Rastogi, and Kyuseok Shim. Mining sequential
patterns with regular expression constraints. IEEE Transactions on Knowledge
and Data Engineering, 14(3):530–552, 2002.

[GS00] Marga M. Groothius and Jörgen S. Svensson. Expert system support and ju-
ridical quality. In Jurix, pages 1–10, Amsterdam, 2000. IOS Press.

[Gum54] Emil J. Gumbel. Statistical theory of extreme values and some practical appli-
cations. National Bureau of Standards Applied Mathematics Series (US Gov-
ernment Printing Office), 33, 1954.

[Gup60] Shanti S. Gupta. Order statistics from the gamma distribution. Technometrics,
2:243–262, 1960.

[HA04] Victoria J. Hodge and Jim Austin. A survey of outlier detection methodologies.
Artificial Intelligence Review, 22:85–126, 2004.

[Har01] Frank E. Harrell. Regression modeling strategies: with applications to linear
models, logistic regression, and survival analysis. Springer, New York, 2001.

[HL00] David W. Hosmer and Stanley Lemeshow. Applied Logistic Regression, 2nd
Edition. Wiley-Interscience, 2000.

[Hoc88] Yosef Hochberg. A sharper Bonferroni procedure for multiple tests of signifi-
cance. Biometrika, 75:800–803, 1988.

[Hol79] Sture Holm. A simple sequentially rejective multiple test procedure. Scandi-
navian Journal of Statistics, 6:65–70, 1979.

[HSG04] Takaaki Hasegawa, Satoshi Sekine, and Ralph Grishman. Discoverying rela-
tions among named entities from large corpora. In Proceedings of the 42nd
Annual Meeting of the Association for Computational Linguistics (ACL 2004),
Barcelona, Spain, 2004. Association for Computational Linguistics.

[Ioa05] John P. A. Ioannidis. Why most published research findings are false. PLoS
Medicine, 2(8), 2005.

186

Bibliography

[JC00] David D. Jensen and Paul R. Cohen. Multiple comparisons in induction algo-
rithms. Machine Learning, 38(3):309–338, March 2000.

[JG03] Benjamin Johnston and Guido Govenatori. Induction of defeasible logic the-
ories in the legal domain. In Ninth International Conference on AI and Law,
pages 204–213, Edinburgh, 2003. ACM Press.

[JMF99] Anil K Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
Comput. Surv., 31(3):264–323, September 1999.

[KK07] Igor Kononenko and Matjaž Kukar. Machine learning and data mining : intro-
duction to principles and algorithms. Chichester: Horwood Publishing, 2007.

[Kon93] Igor Kononenko. Inductive and bayesian learning in medical diagnosis. Applied
Artificial Intelligence, 7:317–337, 1993.

[LA94] David D. Lewis and William A.Gale. A sequential algorithm for training text
classifiers. In SIGIR ’94: Proceedings of the 17th annual international ACM
SIGIR conference on Research and development in information retrieval, pages
3–12, New York, NY, USA, 1994. Springer-Verlag New York, Inc.

[LD94] Nada Lavrač and Sašo Džeroski. Inductive Logic Programming: Techniques
and Applications. Ellis Horwood, 1994.

[LFTW04] Nada Lavrač, Peter Flach, Ljupčo Todorovski, and Stefan Wrobel. Subgroup
discovery with cn2-sd. Journal of Machine Learning Research, 5:153–188,
2004.

[LFZ99] Nada Lavrač, Peter Flach, and Blaž Zupan. Rule evaluation measures: A uni-
fying view. In Saša Džeroski and Peter Flach, editors, Proceedings of the 9th
International Workshop on Inductive Logic Programming (ILP-99), pages 174–
185, Bled, Slovenia, 1999.

[LHF03] Niels Landwehr, Mark Hall, and Eibe Frank. Logistic model trees. In Proceed-
ings of the 16th European Conference on Machine Learning, 2003.

[Lin04] Tony Lindgren. Methods for rule conflict resolution. In In Proceedings of the
15th European Conference on Machine Learning (ECML-04), pages 262–273,
Pisa, 2004. Springer.

[LS95] Pat Langley and Herbert A. Simon. Applications of machine learning and rule
induction. Commun. ACM, 38(11):54–64, 1995.

187

BIBLIOGRAPHY

[LTJ04] Martin H.C. Law, Alexander Topchy, and Anil K. Jain. Clustering with soft and
group constraints. In Structural, Syntactic, and Statistical Pattern Recognition,
pages 662–670. Springer Berlin, 2004.

[MA94] Gerogy L. Murphy and Paul D. Allopenna. The locus of knowledge effects
in concept learning. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 19:203–222, 1994.

[MB08] Martin Možina and Ivan Bratko. Rectifying predictions of classifiers by local
rules. In Johannes Fuernkranz and Arno Knobbe, editors, From local patterns
to global models, pages 128–140, 2008.

[MDKZ04] Martin Možina, Janez Demsar, Michael W. Kattan, and Blaz Zupan. Nomo-
grams for visualization of naive bayesian classifier. In PKDD, pages 337–348,
2004.

[MDvB06] Martin Možina, Janez Demšar, Jure Žabkar, and Ivan Bratko. Why is rule learn-
ing optimistic and how to correct it. In Johannes Fuernkranz, Tobias Schef-
fer, and Myra Spiliopoulou, editors, Proceedings of 17th European Conference
on Machine Learning (ECML 2006), pages 330–340, Berlin, 2006. Springer-
Verlag.

[MGB09] Martin Možina, Claudio Giuliano, and Ivan Bratko. Arguments extracted from
text in argument based machine learning. In Proceedings of 1st Asia Confer-
ence on Intelligent Information and Database Systems, 2009.

[MGK+08] Martin Možina, Matej Guid, Jana Krivec, Aleksander Sadikov, and Ivan
Bratko. Fighting knowledge acquisition bottleneck with argument based ma-
chine learning. In Proceedings of 18th European Conference on Artificial In-
telligence (ECAI 2008), pages 234–238, Patras, Greece, 2008. IOS Press.

[Mit97] Tom Mitchell. Machine Learning. McGraw-Hill Education (ISE Editions),
October 1997.

[MKGT06] Vikash K. Mansinghka, Charles Kemp, Thomas L. Griffiths, and Joshua B.
Tenenbaum. Structured priors for structure learning. In In Proceedings of the
22nd Conference on Uncertainty in Artificial Intelligence (UAI. AUAI Press,
2006.

[MKKC86] Tom M. Mitchell, Richard M. Keller, and Smadar T. Kedar-Cabelli.
Explanation-based generalization: A unifying view. Machine Learning,
1(1):47–80, 1986.

188

Bibliography

[MN98] Andrew K. McCallum and Kamal Nigam. Employing em in pool-based active
learning for text classification. In Proceedings of the International Conference
on Machine Learning (ICML), page 359–367. Morgan Kaufmann, 1998.

[MS00] Alexander Maedche and Steffen Staab. Discovering conceptual relations from
text. In Proc. of ECAI’2000, pages 321–325, 2000.

[MUC] MUC - Message Understanding Conferences,
http://cs.nyu.edu/faculty/grishman/muc6.html.

[MvB06] Martin Možina, Jure Žabkar, and Ivan Bratko. Argument based rule learning.
In Proceedings of 17th European Conference on Artificial Intelligence (ECAI
2006), Riva Del Garda, Italy, 2006. IOS Press.

[MvB07] Martin Možina, Jure Žabkar, and Ivan Bratko. Argument based machine learn-
ing. Artificial Intelligence, 171(10/15):922–937, 2007.

[MvBC+06] Martin Možina, Jure Žabkar, Trevor Bench-Capon, , and Ivan Bratko. Argu-
ment based machine learning applied to law. Artificial Intelligence and Law,
2006.

[NRA+96] Claire Nedelléc, Celine Rouveirol, Hilde Adé, Francesco Bergadano, and
Brigid Tausend. Advances in Inductive Logice Programming, chapter Declara-
tive bias in ILP, pages 82–103. IOS Press, 1996.

[NS04] Hieu T. Nguyen and Arnold Smeulders. Active learning using pre-clustering.
In Proceedings of the International Conference on Machine Learning (ICML),
page 79–86. ACM Press, 2004.

[Nun91] Marlon Nunez. The use of background knowledge in decision tree induction.
Mach. Learn., 6(3):231–250, 1991.

[Paz91] Michael J. Pazzani. Influence of prior knowledge on concept acquisition: Ex-
perimental and computational results. Journal of Experimental Psychology:
Learning, Memory and Cognition, 17:416–432, 1991.

[PHL01] Jian Pei, Jiawei Han, and Laks V.S. Lakshmanan. Mining frequent itemsets
with convertible constraints. In 17th International Conference on Data Engi-
neering (ICDE’01), page 433, 2001.

[PK92] Michael Pazzani and Dennis Kibler. The utility of knowledge in inductive
learning. Machine Learning, 9(1):57 – 94, 1992.

189

BIBLIOGRAPHY

[PMS97] M. Pazzani, Subramani Mani, and Rodman W. Shankle. Beyond concise and
colorful: Learning intelligible rules. In Third International Conference on
Knowledge Discovery and Data Mining, pages 235–238, Newport Beach, CA,
1997. AAAI Press.

[Pol92] John L. Pollock. How to reason defeasibly. Artificial Intelligence, 57:1–42,
1992.

[QCJ95a] Ross J. Quinlan and Mike R. Cameron-Jones. Induction of logic programs:
Foil and related systems. New Generation Comput, 13(3&4):287–312, 1995.

[QCJ95b] Ross J. Quinlan and Mike R. Cameron-Jones. Oversearching and layered
search in empirical learning. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence, pages 1019–1024, Montreal, Canada,
August 1995.

[Qui86] Ross J. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106,
1986.

[Qui93] Ross J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
mann,San Diego, 1993.

[RdPB+83] J. Rousseauw, J. du Plessis, A. Benade, P.Jordann, J. Kotze, P.Jooste, and J. Fer-
reira. Coronary risk factor screening in three rural communities. South African
Medical Journal, 64:430–436, 1983.

[Ric97] Henry S. Richardson. Practical Reasoning about Final Ends. Cambridge Uni-
versity Press, 1997.

[Ris78] Jorma Rissanen. Modeling by the shortest data description. Automatica,
14:465–471, 1978.

[RK06] Ulrich Rückert and Stefan Kramer. A statistical approach to rule learning.
In ICML ’06: Proceedings of the 23rd international conference on Machine
learning, pages 785–792, New York, NY, USA, 2006. ACM.

[RM01] Nicholas Roy and Andrew Mccallum. Toward optimal active learning through
sampling estimation of error reduction. In In Proc. 18th International Conf. on
Machine Learning, pages 441–448. Morgan Kaufmann, 2001.

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach
(Second Edition). Prentice Hall, 2003.

190

Bibliography

[RN04] Chris Reed and Timothy J. Norman. Argumentation Machines: New Frontiers
in Argument and Computation. Kluwer Academic Publishers, Norwell, MA,
USA, 2004.

[Ros95] Jeremy Roschelle. Learning in interactive environments: Prior knowledge and
new experience. In J. H. Falk and L. D. Dierking, editors, Public institutions
for personal learning: Establishing a research agenda, pages 37–51, 1995.

[SC08] Burr Settles and Mark Craven. An analysis of active learning strategies for
sequence labeling tasks. In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), page 1069–1078. ACL Press,
2008.

[SD05] Qiang Sun and Gerald DeJong. Explanation-augmented svm: an approach
to incorporating domain knowledge into svm learning. In ICML ’05: Proceed-
ings of the 22nd international conference on Machine learning, pages 864–871,
New York, NY, USA, 2005. ACM.

[sem] Semeval-2007, http://nlp.cs.swarthmore.edu/semeval/.

[Set09] Burr Settles. Active learning literature survey. Computer Sciences Technical
Report 1648, University of Wisconsin–Madison, 2009.

[SG05] Mark Stevenson and Mark A. Greenwood. A semantic approach to ie pattern
induction. In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics, page 379–386, Ann Arbour, MI, 2005.

[SL92] Guillermo R. Simari and Ronald P. Loui. A mathematical treatment of de-
feasible reasoning and its implementation. Artificial Intelligence, 53:125–157,
1992.

[SMG+06] Aleksander Sadikov, Martin Možina, Matej Guid, Jana Krivec, and Ivan
Bratko. Automated chess tutor. In Proceedings of the 5th International Con-
ference on Computers and Games, 2006.

[SOS92] Sebastian H. Seung, M. Opper, and H. Sompolinsky. Query by committee. In
COLT ’92: Proceedings of the fifth annual workshop on Computational learn-
ing theory, pages 287–294, New York, NY, USA, 1992. ACM Press.

[SSSV98] Bernhard Scholkopf, Patrice Simard, Alexander J. Smola, and Vladimir Vap-
nik. Prior knowledge in support vector kernels. In M. Jordan, M. Kearns, and
S. Solla, editors, Advances in Neural Information Processing Systems 10, pages
640–646, 1998.

191

BIBLIOGRAPHY

[SVA97] Ramakrishnan Srikant, Quoc Vu, and Rakesh Agrawal. Mining associations
rules with item constraints. In Proceedings of the Third International Confer-
ence on Knowledge Discovery and Data Mining, pages 67–73, 1997.

[SVLD92] Patrice S. Simard, Bernard Victorri, Yann Lecun, and John Denker. Tangent-
prop - a formalism for specifying selected invariances in an adaptive network.
In Advances in Neural Information Processing Systems (NIPS) 4, San Mateo,
CA, 1992.

[TD97] Ljupčo Todorovski and Sašo Džeroski. Declarative bias in equation discov-
ery. In Proceedings of the Fourteenth International Conference on Machine
Learning, 1997.

[TD01a] Ljupčo Todorovski and Sašo Džeroski. Theory revision in equation discovery.
In Discovery Science, pages 389–400, 2001.

[TD01b] Ljupčo Todorovski and Sašo Džeroski. Using domain knowledge on popula-
tion dynamics modeling for equation discovery. In European Conference on
Machine Learning, pages 478–490, 2001.

[TFL00] Ljupčo Todorovski, Peter Flach, and Nada Lavrač. Predictive performance
of weighted relative accuracy. In D. Zighed, J. Komorowski, and J. Zytkow,
editors, Proceedings of the 4th European Conference of Principles of Data
Mining and Knowledge Discovery (PKDD-00), pages 255–264, Lyon, France,
2000.

[Tib96] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society, 58(1):267–288, 1996.

[TM93] Sebastian Thrun and Tom M. Mitchell. Integrating inductive neural network
learning and explanation-based learning. In Proceeding of the 1993 Interna-
tional Joint Conference on Artificial Intelligence, 1993.

[Tou58] Stephen Toulmin. The Uses of Argument. Cambridge University Press, 1958.

[TS94] Geoffrey G. Towell and Jude W. Shavlik. Knowledge-based artificial neural
networks. Artif. Intell., 70(1-2):119–165, 1994.

[Vap95] Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,
1995.

192

Bibliography

[vB03] Dorian Šuc and Ivan Bratko. Improving numerical prediction with qualitative
constraints. In ECML 2003 - 14th European Conference on Machine Learning,
Dubrovnik, Croatia, September 2003.

[vMVB06] Jure Žabkar, Martin Možina, Jerneja Videčnik, and Ivan Bratko. Argument
based machine learning in a medical domain. In Paul E. Dunne and Trevor J.M.
Bench-Capon, editors, Proceedings of Computational Models of Argument
(COMMA), pages 59–70, 2006.

[VR02] William N. Venables and Brian D. Ripley. Modern Applied Statistics with S.
Fourth Edition. Springer, 2002.

[Vre97] Gerard A.W. Vreeswijk. Abstract argumentation systems. Artificial Intelli-
gence, 90:225–279, 1997.

[vVB04] Dorian Šuc, Daniel Vladušič, and Ivan Bratko. Qualitatively faithful quantita-
tive prediction. Artificial Intelligence, 158(2):189 – 214, 2004.

[Wal06] Doulgas Walton. Fundamentals of Critical Argumentation. Cambridge Uni-
versity Press, 2006.

[Wat99] John Watson. Secrets of Modern Chess Strategy. Gambit Publications, 1999.

[WCRS01] Kiri Wagsta, Claire Cardie, Seth Rogers, and Stefan Schroedl. Constrained k-
means clustering with background knowledge. In International Conference on
Machine Learning, pages 577–584, 2001.

[WI00] Sholom M. Weiss and Nitin Indurkhya. Lightweight rule induction. In Pro-
ceedings of the Seventeenth International Conference on Machine Learning,
pages 1135 – 1142. Morgan Kaufmann, 2000.

[Wil45] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics,
1:80–83, 1945.

[WWZ99] Geoffrey I. Webb, Jason Wells, and Zijian Zheng. An experimental evaluation
of integrating machine learning with knowledge acquisition. Mach. Learn.,
35(1):5–23, 1999.

193

	Contents
	Introduction
	Overview of the dissertation
	Contributions of the dissertation

	Fundamental Principles and Related Work
	Expert Knowledge in Machine Learning
	Machine learning
	Why use domain knowledge?
	An overview of using knowledge in learning
	Formal definition of learning with prior knowledge

	Introduction to Argumentation
	An argument
	Reasoning with arguments
	Argumentation and machine learning

	Argument Based Machine Learning and the ABCN2 Algorithm
	Argument Based Machine Learning
	An illustrating example
	Motivation
	Formal definition of argument based machine learning
	Comparison of classical and argument-based prior knowledge
	Guidelines for building argument based machine learning methods
	Argument based inductive logic programming
	Argument based logistic regression

	Argument Based Rule Learning (ABCN2)
	Argumented examples
	Argument based CN2 algorithm
	ABCN2: covering algorithm
	ABCN2: search procedure.
	Time complexity and optimisation
	Implementation

	Extensions of ABCN2
	Extreme value correction
	Related work
	The general principle of extreme value correction

	Extreme value correction in rule learning
	EVC algorithm for relative frequencies.
	Extreme value corrected relative frequency in PN space
	Experiments
	Extreme value correction in argument based rule learning
	When extreme value correction should be used?

	Probabilistic covering
	Computing parameters of extreme-value distribution

	Classification from Rules and Combining ABCN2 with Other Methods
	Related work
	The PILAR algorithm
	Log-linear sum of unordered rules
	Rules as constraints

	Evaluation
	Linear models vs. non-linear models
	PILAR vs other linear models
	Improving machine learning methods: logistic regression
	Visualisation of PILAR model with a nomogram

	PILAR + any method = any ABML method
	Discussion

	ABML Refinement Loop: Selection of Critical Examples
	Identifying critical examples
	Are expert's arguments good or should they be improved?
	Similarity and differences with active learning

	 Experiments and Evaluation
	Introductory experiments
	Animal classification
	Welfare benefit approval
	The data set
	Experiment with ABCN2
	Discussion

	Infections in elderly population
	Data
	Arguments
	Experiments
	Discussion

	South Africa heart-disease domain

	Arguments Implying New Attributes
	Japanese credit screening database
	ZEUS credit assignment problem
	Construction of sophisticated chess concepts
	Experiment
	Discussion

	Automatically Extracted Arguments from Text
	Extracting arguments from text
	Case study: animal classification

	Can Imperfect Arguments be Damaging?

	Concluding Remarks and Further Work
	Razširjeni povzetek v slovenskem jeziku (Extended Abstract in Slovene Language)
	Uvod
	Prispevki znanosti

	Argumentirano strojno ucenje
	Argumentirano ucenje pravil
	Argumentirani ucni primeri
	ABCN2 algoritem
	Ocenjevanje kvalitete pravila v ABCN2
	Algoritem PILAR: klasifikacija s pravili in popravljanje poljubne metode strojnega ucenja

	ABML ucni cikel
	Eksperimenti in aplikacije
	Klasifikacija živali
	Odobritev socialne pomoci
	Prognostika infekcije med starejšimi obcani
	Prognostika bolezni srca
	Odobravanje kredita (Japanese Credit Screening Database)
	Konstrukcija kompleksnih šahovskih konceptov
	Avtomatska konstrukcija argumentov iz teksta
	Vpliv napacnih argumentov na tocnost hipoteze

	Zakljucek

	Bibliography

